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The BPL vs. L Problem

The Problem

Derandomize with low space overhead.

Space s randomized algorithm

↓

Space s ′ deterministic algorithm

Hopefully, s ′ = O(s).
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Where are we now?
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Where are we now?

Several other milestones:

Nisan-Zuckerman (STOC’93)

Impagliazzo-Nisan-Wigderson (STOC’94)

Exciting advances in recent years (see Hoza’s survey’22, STOC’20
workshop).
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PRGs for ROBPs

Fact

∀n,w , ε ∃PRG for (w , n)-ROBPs with seed length

sopt = O
(
log n + logw + log ε−1

)
.

Theorem (Nisan STOC’90)

∀n,w , ε ∃space-efficient PRG for (w , n)-ROBPs with seed length

sNisan = O
(
log n · (log n + logw + log ε−1)

)
.
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Nisan’s PRG and derandomization

Theorem (Nisan STOC’90)

∀n,w , ε ∃space-efficient PRG for (w , n)-ROBPs with seed length

sNisan = O
(
log n · (log n + logw + log ε−1)

)
.

Näıve derandomization:

w = nΘ(1) ε = O(1),

and so sNisan = O(log2 n), hence BPL ⊆ L2.

Saks-Zhou applies Nisan’s PRG in a sophisticated way in the
regime

w , ε−1 = 2log2 n � n

to conclude BPL ⊆ L3/2.
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Outline

1 The BPL vs. L Problem

2 Nisan’s paradigm

3 The error parameter

4 Improving Saks-Zhou for medium width

5 Summary

6 The width parameter, time permitting
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Nisan’s paradigm
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Nisan’s paradigm

s(n) = log n ·
(
logw + log ε−1

Ext

)

Error evolves as

ε(n) = 2ε(n/2) + εExt =⇒ εfinal = ε(n) = n · εExt

Hence,
s(n) = O

(
log n · (logw + log n + log ε−1

final)
)
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A tale of three parameters

Observation 1. A space-efficient PRG with seed length

s = O
(
log n · log n + logw + log ε−1

)
,

when used in the Saks-Zhou framework, would yield BPL ⊆ L4/3.

Raz-Reingold (STOC’99) suggested a beautiful idea towards
obtaining seed length

sRR = O
(
log n · (log n + log ε−1) + logw

)
.

Observation 2. The log n · log n term is due to the way that the
error evolves in Nisan’s paradigm. Thus, better control on the way
the error evolves may solve both problems, giving

s dreamy = O
(
log n · logw + log ε−1

)
.
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A tale of three parameters

With Braverman and Garg (STOC’18) we obtained, essentially, a
PRG with seed length

sBCG = Õ
(
log n · (log n + logw) + log ε−1

)
.

More precisely, we introduced and constructed weighted PRGs.
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Weighted PRGs

Definition

A weighted PRG with error ε against a class of functions C is a
function

(G, ω) : {0, 1}s → {0, 1}n × R

s.t. ∀f ∈ C, ∣∣∣E[f (Un)]−
∑

σ∈{0,1}s
ω(σ)f (G(σ))

∣∣∣ ≤ ε.

WPRGs are as good as PRGs for näıve derandomization and
also for the Saks-Zhou framework.

WPRGs induce hitting sets.

Hoza and Zuckerman (FOCS’18) gave a much simplified
hitting set with such parameters.
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The idea underlying BCG
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Error reduction via Richardson iterations

Several simplifications to BCG were introduced, most notably,
Chattopadhyay-Liao (CCC’20).

With Doron, Renard, Sberlo, and Ta-Shma (CCC’21), we obtained
a substantial simplification, in fact, an error reduction procedure

n−1-error PRG → ε-error weighted PRG

with essentially optimal seed length overhead of ≈ log ε−1.

The result was concurrently and independently obtained by Pyne
and Vadhan (CCC’21). Hoza (RANDOM’21) got rid of all log log
factors.
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Error reduction via Richardson iterations

Let A be the random walk operator corresponding to a ROBP. We
wish to approximate An. Note that

(I− A)−1 = I + A + A2 + · · ·+ An + · · ·

To avoid this “interference” of all powers we can consider the
tensor with the directed path graph. E.g.,

P4 =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 P4⊗A =


0 0 0 0
A 0 0 0
0 A 0 0
0 0 A 0


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Error reduction via Richardson iterations

(I− P4⊗A)−1 =


I 0 0 0
A I 0 0
A2 A I 0
A3 A2 A I

 .

L = I− Pn+1⊗A is the Laplacian of the directed graph Pn+1⊗A.

Define

Lk =
k∑

i=0

(I− L̃−1L)i L̃−1.

It is easy to verify that

‖I− L̃−1L‖ ≤ ε0 =⇒ ‖I− LkL‖ ≤ εk+1
0 ,
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Error reduction via Richardson iterations

Thus, to obtain a good ε approximation of An, we

1 Compute a modest ε0 approximation Ãi of Ai for 1 ≤ i ≤ n.

Namely, ‖Ãi − Ai‖ ≤ ε0.

2 Construct

L̃−1 =


I 0 0 0 0

Ã I 0 0 0

Ã2 Ã I 0 0
...

... Ã I 0

Ãn Ãn−1 · · · Ã I

 .

3 Compute Lk =
∑k

i=0 (I− L̃−1L)i L̃−1 for k = log ε−1

log ε−1
0

.

4 Return the bottom-left block of Lk .
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Example k = 1, n = 3

L1 =
k=1∑
i=0

(I− L̃−1L)i L̃−1, ,

where recall

L̃−1 =


I 0 0 0

Ã I 0 0

Ã2 Ã I 0

Ã3 Ã2 Ã I

 L = I−P4⊗A =


I 0 0 0
−A I 0 0

0 −A I 0
0 0 −A I


Then,

L1 =


I 0 0 0
A I 0 0

ÃA + AÃ− Ã2 A I 0

Ã2A− Ã2Ã + ÃAÃ− ÃÃ2 + AÃ2 ÃA + AÃ− Ã2 A I

 .
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Example k = 1, n = 4


I 0 0 0
A I 0 0

ÃA + AÃ− Ã2 A I 0

Ã2A− Ã2Ã + ÃAÃ− ÃÃ2 + AÃ2 ÃA + AÃ− Ã2 A I

 .


I 0 0 0 0
A I 0 0 0

ÃA + AÃ− Ã2 A I 0 0

Ã2A− Ã2Ã + ÃAÃ− ÃÃ2 + AÃ2 ↖ A I 0

Ã3A + ÃÃ2Ã− Ã3Ã + ÃAÃ2 − Ã2Ã2 + AÃ3 − ÃÃ3 ↖ ↖ A I

 .

Gil Cohen (Tel Aviv University) Computational Complexity of Discrete Problems, DagstuhlRecent progress towards BPL vs. L



Example k = 1, n = 4


I 0 0 0
A I 0 0
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Improving Saks-Zhou for medium width

Ignoring ε, in matrix-language, Saks-Zhou give a space

O
(√

log n · (log n + logw)
)

algorithm for approximating An and, more generally, the product of
n stochastic w × w matrices.

Joint with Doron, Sberlo and Ta-Shma (STOC’23), we reduce the
space down to

Õ
(

log n +
√

log n · logw
)
.

This is nearly optimal for width up to w = 2
√

log n.

Based on our earlier manuscript on matrix powering, the case of
iterated product was concurrently and independently obtained by
Putterman and Pyne (STOC’23).
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Summary
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The width parameter
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