Recent progress towards BPL vs. L

Gil Cohen (Tel Aviv University)

Computational Complexity of Discrete Problems, Dagstuhl
March 15, 2023

The BPL vs. L Problem

The Problem

Derandomize with low space overhead.

The BPL vs. L Problem

The Problem

Derandomize with low space overhead.

Space s randomized algorithm \downarrow

Space s^{\prime} deterministic algorithm
Hopefully, $s^{\prime}=O(s)$.

Where are we now?

Lewis-Hartmanis-Stearns 65

$$
R L \subseteq N L \subseteq L^{2}
$$

Where are we now?

Several other milestones:

- Nisan-Zuckerman (STOC'93)
- Impagliazzo-Nisan-Wigderson (STOC'94)

Where are we now?

Several other milestones:

- Nisan-Zuckerman (STOC'93)
- Impagliazzo-Nisan-Wigderson (STOC'94)

Exciting advances in recent years (see Hoza's survey'22, STOC'20 workshop).

PRGs for ROBPs

Fact

$\forall n, w, \varepsilon \exists P R G$ for (w, n)-ROBPs with seed length

$$
s_{\mathrm{opt}}=O\left(\log n+\log w+\log \varepsilon^{-1}\right) .
$$

PRGs for ROBPs

Fact

$\forall n, w, \varepsilon \exists P R G$ for (w, n)-ROBPs with seed length

$$
s_{\mathrm{opt}}=O\left(\log n+\log w+\log \varepsilon^{-1}\right)
$$

Theorem (Nisan STOC'90)

$\forall n, w, \varepsilon \exists$ space-efficient PRG for (w, n)-ROBPs with seed length

$$
s_{\text {Nisan }}=O\left(\log n \cdot\left(\log n+\log w+\log \varepsilon^{-1}\right)\right) .
$$

Nisan's PRG and derandomization

Theorem (Nisan STOC'90)

$\forall n, w, \varepsilon \exists$ space-efficient PRG for (w, n)-ROBPs with seed length

$$
s_{\text {Nisan }}=O\left(\log n \cdot\left(\log n+\log w+\log \varepsilon^{-1}\right)\right)
$$

Naïve derandomization:

$$
\begin{array}{r}
w=n^{\Theta(1)} \quad \varepsilon=O(1), \\
\text { and so } s_{\text {Nisan }}=O\left(\log ^{2} n\right) \text {, hence } \mathbf{B P L} \subseteq \mathbf{L}^{2}
\end{array}
$$

Nisan's PRG and derandomization

Theorem (Nisan STOC'90)

$\forall n, w, \varepsilon \exists$ space-efficient PRG for (w, n)-ROBPs with seed length

$$
s_{\text {Nisan }}=O\left(\log n \cdot\left(\log n+\log w+\log \varepsilon^{-1}\right)\right)
$$

Naïve derandomization:

$$
w=n^{\Theta(1)} \quad \varepsilon=O(1)
$$

and so $s_{\text {Nisan }}=O\left(\log ^{2} n\right)$, hence $\mathbf{B P L} \subseteq \mathbf{L}^{2}$.
Saks-Zhou applies Nisan's PRG in a sophisticated way in the regime

$$
w, \varepsilon^{-1}=2^{\log ^{2} n} \gg n
$$

to conclude $\mathbf{B P L} \subseteq \mathbf{L}^{3 / 2}$.

Outline

(1) The BPL vs. L Problem
(2) Nisan's paradigm
(3) The error parameter
4. Improving Saks-Zhou for medium width
(5) Summary
(6) The width parameter, time permitting

Nisan's paradigm

Nisan's paradigm

Nisan's paradigm

Nisan's paradigm

Error evolves as

$$
\varepsilon(n)=2 \varepsilon(n / 2)+\varepsilon_{\mathrm{Ext}} \quad \Longrightarrow \quad \varepsilon_{\mathrm{final}}=\varepsilon(n)=n \cdot \varepsilon_{\mathrm{Ext}}
$$

Nisan's paradigm

$$
s(n)=\log n \cdot\left(\log w+\log \varepsilon_{\mathrm{Ext}}^{-1}\right)
$$

Error evolves as

$$
\varepsilon(n)=2 \varepsilon(n / 2)+\varepsilon_{\mathrm{Ext}} \quad \Longrightarrow \quad \varepsilon_{\mathrm{final}}=\varepsilon(n)=n \cdot \varepsilon_{\mathrm{Ext}}
$$

Hence,

$$
s(n)=O\left(\log n \cdot\left(\log w+\log n+\log \varepsilon_{\text {final }}^{-1}\right)\right)
$$

Outline

(1) The BPL vs. L Problem
(2) Nisan's paradigm
(3) The error parameter
4. Improving Saks-Zhou for medium width
(5) Summary
(6) The width parameter, time permitting

A tale of three parameters

Observation 1. A space-efficient PRG with seed length

$$
s=O\left(\log n \cdot \log n+\log w+\log \varepsilon^{-1}\right)
$$

when used in the Saks-Zhou framework, would yield BPL $\subseteq \mathbf{L}^{4 / 3}$.

A tale of three parameters

Observation 1. A space-efficient PRG with seed length

$$
s=O\left(\log n \cdot \log n+\log w+\log \varepsilon^{-1}\right)
$$

when used in the Saks-Zhou framework, would yield $\mathbf{B P L} \subseteq \mathbf{L}^{4 / 3}$.
Raz-Reingold (STOC'99) suggested a beautiful idea towards obtaining seed length

$$
s_{\mathrm{RR}}=O\left(\log n \cdot\left(\log n+\log \varepsilon^{-1}\right)+\log w\right)
$$

A tale of three parameters

Observation 1. A space-efficient PRG with seed length

$$
s=O\left(\log n \cdot \log n+\log w+\log \varepsilon^{-1}\right)
$$

when used in the Saks-Zhou framework, would yield $\mathbf{B P L} \subseteq \mathbf{L}^{4 / 3}$.
Raz-Reingold (STOC'99) suggested a beautiful idea towards obtaining seed length

$$
s_{\mathrm{RR}}=O\left(\log n \cdot\left(\log n+\log \varepsilon^{-1}\right)+\log w\right)
$$

Observation 2. The $\log n \cdot \log n$ term is due to the way that the error evolves in Nisan's paradigm. Thus, better control on the way the error evolves may solve both problems, giving

$$
s_{\text {dreamy }}=O\left(\log n \cdot \log w+\log \varepsilon^{-1}\right)
$$

A tale of three parameters

With Braverman and Garg (STOC'18) we obtained, essentially, a PRG with seed length

$$
s_{\mathrm{BCG}}=\widetilde{O}\left(\log n \cdot(\log n+\log w)+\log \varepsilon^{-1}\right)
$$

More precisely, we introduced and constructed weighted PRGs.

Weighted PRGs

Definition

A weighted PRG with error ε against a class of functions \mathcal{C} is a function

$$
(\mathrm{G}, \omega):\{0,1\}^{s} \rightarrow\{0,1\}^{n} \times \mathbb{R}
$$

s.t. $\forall f \in \mathcal{C}$,

$$
\left|\mathbb{E}\left[f\left(U_{n}\right)\right]-\sum_{\sigma \in\{0,1\}^{s}} \omega(\sigma) f(\mathrm{G}(\sigma))\right| \leq \varepsilon
$$

Weighted PRGs

Definition

A weighted PRG with error ε against a class of functions \mathcal{C} is a function

$$
(\mathrm{G}, \omega):\{0,1\}^{s} \rightarrow\{0,1\}^{n} \times \mathbb{R}
$$

s.t. $\forall f \in \mathcal{C}$,

$$
\left|\mathbb{E}\left[f\left(U_{n}\right)\right]-\sum_{\sigma \in\{0,1\}^{s}} \omega(\sigma) f(\mathrm{G}(\sigma))\right| \leq \varepsilon
$$

- WPRGs are as good as PRGs for naïve derandomization and also for the Saks-Zhou framework.
- WPRGs induce hitting sets.
- Hoza and Zuckerman (FOCS'18) gave a much simplified hitting set with such parameters.

The idea underlying BCG

The idea underlying BCG

The idea underlying BCG

The idea underlying BCG

The idea underlying BCG

(10-7) (ID-D) - (ID-D)

Error reduction via Richardson iterations

Several simplifications to BCG were introduced, most notably, Chattopadhyay-Liao (CCC'20).

With Doron, Renard, Sberlo, and Ta-Shma (CCC'21), we obtained a substantial simplification, in fact, an error reduction procedure

$$
n^{-1} \text {-error PRG } \quad \rightarrow \quad \varepsilon \text {-error weighted PRG }
$$

with essentially optimal seed length overhead of $\approx \log \varepsilon^{-1}$.

Error reduction via Richardson iterations

Several simplifications to BCG were introduced, most notably, Chattopadhyay-Liao (CCC'20).

With Doron, Renard, Sberlo, and Ta-Shma (CCC'21), we obtained a substantial simplification, in fact, an error reduction procedure

$$
n^{-1} \text {-error PRG } \quad \rightarrow \quad \varepsilon \text {-error weighted PRG }
$$

with essentially optimal seed length overhead of $\approx \log \varepsilon^{-1}$.
The result was concurrently and independently obtained by Pyne and Vadhan (CCC'21). Hoza (RANDOM'21) got rid of all $\log \log$ factors.

Error reduction via Richardson iterations

Let \mathbf{A} be the random walk operator corresponding to a ROBP. We wish to approximate \mathbf{A}^{n}. Note that

$$
(\mathbf{I}-\mathbf{A})^{-1}=\mathbf{I}+\mathbf{A}+\mathbf{A}^{2}+\cdots+\mathbf{A}^{n}+\cdots
$$

To avoid this "interference" of all powers we can consider the tensor with the directed path graph. E.g.,

$$
\mathbf{P}_{4}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \quad \mathbf{P}_{4} \otimes \mathbf{A}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\mathbf{A} & 0 & 0 & 0 \\
0 & \mathbf{A} & 0 & 0 \\
0 & 0 & \mathbf{A} & 0
\end{array}\right)
$$

Error reduction via Richardson iterations

$$
\left(\mathbf{I}-\mathbf{P}_{4} \otimes \mathbf{A}\right)^{-1}=\left(\begin{array}{cccc}
\mathbf{I} & 0 & 0 & 0 \\
\mathbf{A} & \mathbf{1} & 0 & 0 \\
\mathbf{A}^{2} & \mathbf{A} & \mathbf{1} & 0 \\
\mathbf{A}^{3} & \mathbf{A}^{2} & \mathbf{A} & \mathbf{I}
\end{array}\right) .
$$

$\mathbf{L}=\mathbf{I}-\mathbf{P}_{n+1} \otimes \mathbf{A}$ is the Laplacian of the directed graph $\mathbf{P}_{n+1} \otimes \mathbf{A}$.

Error reduction via Richardson iterations

$$
\left(\mathbf{I}-\mathbf{P}_{4} \otimes \mathbf{A}\right)^{-1}=\left(\begin{array}{cccc}
\mathbf{I} & 0 & 0 & 0 \\
\mathbf{A} & \mathbf{I} & 0 & 0 \\
\mathbf{A}^{2} & \mathbf{A} & \mathbf{1} & 0 \\
\mathbf{A}^{3} & \mathbf{A}^{2} & \mathbf{A} & \mathbf{I}
\end{array}\right) .
$$

$\mathbf{L}=\mathbf{I}-\mathbf{P}_{n+1} \otimes \mathbf{A}$ is the Laplacian of the directed graph $\mathbf{P}_{n+1} \otimes \mathbf{A}$.
Define

$$
\mathbf{L}_{k}=\sum_{i=0}^{k}\left(\mathbf{I}-\widetilde{\mathbf{L}^{-1}} \mathbf{L}\right)^{i} \widetilde{\mathbf{L}^{-1}}
$$

It is easy to verify that

$$
\left\|\mathbf{I}-\widetilde{\mathbf{L}^{-1}} \mathbf{L}\right\| \leq \varepsilon_{0} \quad \Longrightarrow \quad\left\|\mathbf{I}-\mathbf{L}_{k} \mathbf{L}\right\| \leq \varepsilon_{0}^{k+1}
$$

Error reduction via Richardson iterations

Thus, to obtain a good ε approximation of \mathbf{A}^{n}, we
(1) Compute a modest ε_{0} approximation $\widetilde{\mathbf{A}^{i}}$ of \mathbf{A}^{i} for $1 \leq i \leq n$. Namely, $\left\|\widetilde{\mathbf{A}^{i}}-\mathbf{A}^{i}\right\| \leq \varepsilon_{0}$.
(2) Construct

$$
\widetilde{\mathbf{L}^{-1}}=\left(\begin{array}{ccccc}
\mathbf{I} & 0 & 0 & 0 & 0 \\
\widetilde{\mathbf{A}} & \mathbf{I} & 0 & 0 & 0 \\
\widetilde{\mathbf{A}^{2}} & \widetilde{\mathbf{A}} & \mathbf{I} & 0 & 0 \\
\vdots & \vdots & \widetilde{\mathbf{A}} & \mathbf{I} & 0 \\
\widetilde{\mathbf{A}^{n}} & \widetilde{\mathbf{A}^{n-1}} & \cdots & \widetilde{\mathbf{A}} & \mathbf{I}
\end{array}\right) .
$$

(3) Compute $\mathbf{L}_{k}=\sum_{i=0}^{k}\left(\mathbf{I}-\widetilde{\mathbf{L}^{-1}} \mathbf{L}\right)^{i} \widetilde{\mathbf{L}^{-1}}$ for $k=\frac{\log \varepsilon^{-1}}{\log \varepsilon_{0}^{-1}}$.
(9) Return the bottom-left block of \mathbf{L}_{k}.

Example $k=1, n=3$

$$
\mathbf{L}_{1}=\sum_{i=0}^{k=1}\left(\mathbf{I}-\widetilde{\mathbf{L}^{-1}} \mathbf{L}\right)^{i} \widetilde{\mathbf{L}^{-1}}
$$

where recall

$$
\widetilde{\mathbf{L}^{-1}}=\left(\begin{array}{cccc}
\mathbf{I} & 0 & 0 & 0 \\
\widetilde{\mathbf{A}} & \mathbf{I} & 0 & 0 \\
\widetilde{\mathbf{A}^{2}} & \tilde{\mathbf{A}} & \mathbf{I} & 0 \\
\widetilde{\mathbf{A}^{3}} & \widetilde{\mathbf{A}^{2}} & \tilde{\mathbf{A}} & \mathbf{I}
\end{array}\right) \quad \mathbf{L}=\mathbf{I}-\mathbf{P}_{4} \otimes \mathbf{A}=\left(\begin{array}{cccc}
\mathbf{I} & 0 & 0 & 0 \\
-\mathbf{A} & \mathbf{I} & 0 & 0 \\
0 & -\mathbf{A} & \mathbf{I} & 0 \\
0 & 0 & -\mathbf{A} & \mathbf{I}
\end{array}\right)
$$

Then,

Example $k=1, n=4$

$$
\left(\begin{array}{cccc}
\mathbf{I} & 0 & 0 & 0 \\
\mathbf{A} & \mathbf{I} & 0 & 0 \\
\widetilde{\mathbf{A}} \mathbf{A}+\widetilde{\mathbf{A}}-\widetilde{\mathbf{A}^{2}} & \mathbf{A} & \mathbf{I} & 0 \\
\widetilde{\mathbf{A}^{2}} \mathbf{A}-\widetilde{\mathbf{A}^{2}} \widetilde{\mathbf{A}}+\widetilde{\mathbf{A}} \widetilde{\mathbf{A}}-\widetilde{\mathbf{A}} \widetilde{\mathbf{A}^{2}}+\widetilde{\mathbf{A}} \widetilde{\mathbf{A}^{2}} & \widetilde{\mathbf{A}} \mathbf{A}+\widetilde{\mathbf{A}} \widetilde{\mathbf{A}}-\widetilde{\mathbf{A}^{2}} & \mathbf{A} & \mathbf{I}
\end{array}\right) .
$$

Example $k=1, n=4$

$$
\begin{aligned}
& \left(\begin{array}{cccc}
\mathbf{1} & 0 & 0 & 0 \\
\mathbf{A} & \mathbf{1} & 0 & 0 \\
\widetilde{\mathbf{A}} \mathbf{A}+\widetilde{\mathbf{A}}-\widetilde{\mathbf{A}^{2}} & \mathbf{A} & \mathbf{1} & 0 \\
\widetilde{\mathbf{A}^{2} \mathbf{A}}-\widetilde{\mathbf{A}^{2}} \widetilde{\mathbf{A}}+\widetilde{\mathbf{A}} \widetilde{\mathbf{A}}-\widetilde{\mathbf{A}} \widetilde{\mathbf{A}^{2}}+\mathbf{A} \widetilde{\mathbf{A}^{2}} & \widetilde{\mathbf{A}} \mathbf{A}+\mathbf{A} \widetilde{\mathbf{A}}-\widetilde{\mathbf{A}^{2}} & \mathbf{A} & \mathbf{1}
\end{array}\right) .
\end{aligned}
$$

Outline

(1) The BPL vs. L Problem
(2) Nisan's paradigm
(3) The error parameter
(4) Improving Saks-Zhou for medium width
(5) Summary
(6) The width parameter, time permitting

Improving Saks-Zhou for medium width

Ignoring ε, in matrix-language, Saks-Zhou give a space

$$
O(\sqrt{\log n} \cdot(\log n+\log w))
$$

algorithm for approximating \mathbf{A}^{n} and, more generally, the product of n stochastic $w \times w$ matrices.

Improving Saks-Zhou for medium width

Ignoring ε, in matrix-language, Saks-Zhou give a space

$$
O(\sqrt{\log n} \cdot(\log n+\log w))
$$

algorithm for approximating \mathbf{A}^{n} and, more generally, the product of n stochastic $w \times w$ matrices.

Joint with Doron, Sberlo and Ta-Shma (STOC'23), we reduce the space down to

$$
\widetilde{O}(\log n+\sqrt{\log n} \cdot \log w) .
$$

This is nearly optimal for width up to $w=2^{\sqrt{\log n}}$.

Improving Saks-Zhou for medium width

Ignoring ε, in matrix-language, Saks-Zhou give a space

$$
O(\sqrt{\log n} \cdot(\log n+\log w))
$$

algorithm for approximating \mathbf{A}^{n} and, more generally, the product of n stochastic $w \times w$ matrices.

Joint with Doron, Sberlo and Ta-Shma (STOC'23), we reduce the space down to

$$
\widetilde{O}(\log n+\sqrt{\log n} \cdot \log w) .
$$

This is nearly optimal for width up to $w=2^{\sqrt{\log n}}$.
Based on our earlier manuscript on matrix powering, the case of iterated product was concurrently and independently obtained by Putterman and Pyne (STOC'23).

Outline

(1) The BPL vs. L Problem
(2) Nisan's paradigm
(3) The error parameter
4. Improving Saks-Zhou for medium width
(5) Summary
(6) The width parameter, time permitting

Summary

Summary

Outline

(1) The BPL vs. L Problem
(2) Nisan's paradigm
(3) The error parameter
4. Improving Saks-Zhou for medium width
(5) Summary
(6) The width parameter, time permitting

The width parameter

$$
z=E(x, y) \mid G(x) \leadsto S_{\text {mid }}
$$

The width parameter

$$
z=E(x, y) \mid G(x) \leadsto S_{\text {mid }}
$$

The width parameter

$$
z=E(x \circ \sin , y) \mid G(x) \sim S_{\text {mid }}
$$

