Degree 2 Extensions of K(x)Recitation 10

Tomer Manket

Tel Aviv University

Let F/K be a function field such that

•
$$[F: K(x)] = 2$$
 for some $x \in F \setminus K$

2 char(K) \neq 2

We'll be interested in the following questions:

- Can we characterize these function fields?
- What is the Riemann-Roch space $\mathcal{L}(n(x)_{\infty})$, for $n \in \mathbb{N}$?
- What is its dimension dim $n(x)_{\infty}$?
- What is the genus g?

Definition 1

Let K be a field. A polynomial $g \in K[X]$ is square-free if $p^2 \nmid g$ in K[X], for every $p \in K[X]$ with deg $p \ge 1$.

Lemma 2

Let F/K be a function field. Assume that there exists $x \in F \setminus K$ such that [F : K(x)] = 2 and that $char(K) \neq 2$. Then there exists $y \in F$ such that F = K(x, y) and $y^2 = d(x)$ for some square-free $d \in K[X]$ of degree at least 1.

Proof.

Let $y_1 \in F \setminus K(x)$. Then $1 < [K(x)(y_1) : K(x)] \le [F : K(x)] = 2$ so $F = K(x, y_1)$ and $y_1^2 + by_1 + c = 0$ for some $b, c \in K(x)$.

Degree 2 Extension

Proof.

As char(K) \neq 2, completing the square gives

$$\left(y_1+\frac{b}{2}\right)^2=\frac{b^2}{4}-c.$$

Let $y_2 := y_1 + \frac{b}{2}$. Then $K(x, y_2) = K(x, y_1) = F$ and $y_2^2 = \frac{f}{g}$ for $f, g \in K[x]$. Then $y_3 := gy_2$ satisfies $K(x, y_3) = K(x, y_2) = F$ and

$$y_3^2 = (gy_2)^2 = g^2 y_2^2 = gf =: h \in K[x].$$

Note that h is neither in K nor a square in K[x] (otherwise $y_3 \in K[x]$ and $K(x, y_3) = K(x) \neq F$). To conclude, let $h = p_1^{m_1} \cdots p_r^{m_r}$ be a decomposition of h to irreducible factors in K[x] (so at least one m_i is odd). Let $p := p_1^{\lfloor m_1/2 \rfloor} \cdots p_r^{\lfloor m_r/2 \rfloor}$. Then $y := \frac{y_3}{p} \in F$ satisfies the assertions.

For example, if $y_3^2 = x^3(x+1)(2x+1)^4$ we take

$$y := \frac{y_3}{x(2x+1)^2} \implies y^2 = x(x+1)$$

(clearly $K(x, y_3) = K(x, y)$).

Conversely, we have

Claim 3

Let K be a field with char(K) $\neq 2$. Assume F = K(x, y) where x is transcendental over K and $y^2 = d(x)$ for some square-free $d \in K[x]$ of degree at least 1. Then F/K is a function field with [F : K(x)] = 2.

Proof.

Left as an exercise.

Remark 4

In the above claim, it is necessary that d(x) be square-free. Indeed, consider $K = \mathbb{F}_3$ and F = K(x, y) where $y^2 = -(x^4 - x^2 + 1)$. In PS 1 you showed that K is not algebraically closed in F, so F/K is not a function field. Note that in this case,

$$d(x) = -(x^4 + 2x^2 + 1) = -(x^2 + 1)^2.$$

Claim 5

Let F/K be a function field, $x \in F \setminus K$ and $0 \neq f(X) \in K[X]$. Then

9
$$(x)_{\infty}$$
 and $(f(x))_0$ have disjoint supports.

$$(f(x))_{\infty} = \deg(f) \cdot (x)_{\infty}.$$

Proof.

If
$$f \in K^{\times}$$
 this is trivial. Otherwise, $f = \sum_{i=0}^{n} c_i x^i$ where $n = \deg(f) \ge 1$. Let $\emptyset \neq J = \{i : c_i \neq 0\}$ and $\mathfrak{p} \in \mathbb{P}$. Then

$$\begin{split} \nu_{\mathfrak{p}}(x) &\geq 0 \implies \nu_{\mathfrak{p}}(f(x)) \geq \min_{i \in J} \{\nu_{\mathfrak{p}}(c_i x^i)\} = \min_{i \in J} \{i\nu_{\mathfrak{p}}(x)\} \geq 0, \\ \nu_{\mathfrak{p}}(x) &< 0 \implies \nu_{\mathfrak{p}}(f(x)) = \min_{i \in J} \{i\nu_{\mathfrak{p}}(x)\} = n\nu_{\mathfrak{p}}(x) < 0 \end{split}$$

and both parts easily follow.

Lemma 6

Let
$$F/K$$
 be a function field. Let $x \in F \setminus K$ and
 $0 \neq r = \frac{f_1(x)}{f_2(x)} \in K(x)$ such that $f_1, f_2 \in K[X]$ are coprime. Then,
($r) = (f_1(x))_0 - (f_2(x))_0 + (\deg f_2 - \deg f_1) \cdot (x)_\infty$.
($r) = (x)_\infty, (f_1(x))_0, (f_2(x))_0$ are pairwise disjoint.
($r) = \mathcal{L}(n(x)_\infty) \iff \deg f_1 \leq n \text{ and } f_2 \in K^{\times}$.

$$r \in \mathcal{L}(n(x)_{\infty}) \iff \deg r_1 \leq n \text{ and } r_2 \in R$$

.

Proof of (1).

By Claim 5, for i = 1, 2 we have

$$(f_i(x)) = (f_i(x))_0 - (f_i(x))_\infty = (f_i(x))_0 - \deg(f_i) \cdot (x)_\infty$$

Substitution in $(r) = (f_1(x)) - (f_2(x))$ gives the desired result.

Proof of (2).

By Claim 5, $(x)_{\infty}$ and $(f_i(x))_0$ are disjoint for i = 1, 2. It remains to show that $(f_1(x))_0$ and $(f_2(x))_0$ are disjoint.

Suppose $\mathfrak{p} \in \mathbb{P}$ is such that $\nu_{\mathfrak{p}}(f_1(x)), \nu_{\mathfrak{p}}(f_2(x)) > 0$. Then $\nu_{\mathfrak{p}}(x) \ge 0$, and so for every $g(X) \in K[X]$ we have $\nu_{\mathfrak{p}}(g(x)) \ge 0$.

As f_1 and f_2 are coprime, there exist $g_1,g_2\in \mathcal{K}[X]$ such that $f_1g_1+f_2g_2=1.$ Thus,

 $0=\nu_{\mathfrak{p}}(1)=\nu_{\mathfrak{p}}(f_1g_1+f_2g_2)\geq\min(\nu_{\mathfrak{p}}(f_1g_1),\nu_{\mathfrak{p}}(f_2g_2)).$

However, $\nu_{\mathfrak{p}}(f_i g_i) = \nu_{\mathfrak{p}}(f_i) + \nu_{\mathfrak{p}}(g_i) > 0$, a contradiction.

Proof of (3).

Let
$$n \in \mathbb{Z}$$
. Then $r \in \mathcal{L}(n(x)_{\infty}) \iff (r) + n(x)_{\infty} \ge 0$, i.e. iff

$$(f_1(x))_0 - (f_2(x))_0 + (n + \deg f_2 - \deg f_1) \cdot (x)_\infty \ge 0.$$
 (1)

Now, $(f_1(x))_0$, $(f_2(x))_0$ and $(x)_\infty$ are pairwise disjoint, so (1) holds iff

$$(f_2(x))_0 = 0$$
 and $n + \deg f_2 - \deg f_1 \ge 0$.

This holds iff $f_2(x) \in K^{\times}$ (so deg $f_2 = 0$) and $n - \deg f_1 \ge 0$, i.e.

deg
$$f_1 \leq n$$
 and $f_2 \in K^{\times}$.

Let $\sigma \in \operatorname{Aut}(F/K)$. Then σ induces a bijection $\sigma \colon \mathbb{P} \to \mathbb{P}$ $\mathfrak{p} \mapsto \sigma \mathfrak{p}$

where $\sigma \mathfrak{p} \in \mathbb{P}$ is the prime divisor with $\mathcal{O}_{\sigma \mathfrak{p}} = \sigma(\mathcal{O}_{\mathfrak{p}})$.

Proposition 7

Let $\sigma \in Aut(F/K)$ and let \mathcal{D} be the divisors group of F/K.

- The induced bijection σ: P → P can be extended to a group isomorphism σ: D → D.
- So For every $x \in F$, $\sigma((x)) = (\sigma(x))$ and $\sigma((x)_{\infty}) = (\sigma(x))_{\infty}$.
- So For every $a \in D$, $\mathcal{L}(\sigma a) = \sigma(\mathcal{L}(a))$.

Proof.

Left as an exercise.

Lemma 8

Let F/K be a function field. Assume that there exists $x \in F \setminus K$ such that [F : K(x)] = 2 and that $char(K) \neq 2$. Let $y \in F$ be such that F = K(x, y) and $y^2 = d(x)$ for some square-free $d \in K[X]$ of degree $m \ge 1$. Then for every $n \in \mathbb{N}$,

$$\dim n(x)_{\infty} = 2n + 2 - \left\lceil \frac{m}{2} \right\rceil.$$

Note that the existence of such y is guaranteed by Lemma 2.

First,
$$2(y) = (y^2) = (d(x))$$
, so by Claim 5,

$$(y)_{\infty} = \frac{1}{2}(d(x))_{\infty} = \frac{1}{2} \cdot \deg d \cdot (x)_{\infty} = \frac{m}{2}(x)_{\infty}$$

Hence for $i \in \mathbb{N}$,

$$(x^{i}y) = i(x) + (y) = i(x)_{0} - i(x)_{\infty} + (y)_{0} - (y)_{\infty}$$

= $i(x)_{0} - \left(i + \frac{m}{2}\right)(x)_{\infty} + (y)_{0}.$

Thus, an element $x^i y$ is in $\mathcal{L}(n(x)_{\infty})$ iff

$$0 \le (x^{i}y) + n(x)_{\infty} = i(x)_{0} + \left(n - i - \frac{m}{2}\right)(x)_{\infty} + (y)_{0}.$$
 (2)

By claim 5, the supports of $(x)_{\infty}$ and $(y)_0 = \frac{1}{2}(d(x))_0$ are disjoint (and so are those of $(x)_{\infty}$ and $(x)_0$), so (2) holds iff $i \le n - \frac{m}{2}$.

Now, by Lemma 6 we also have $x^i \in \mathcal{L}(n(x)_\infty)$ for i = 0, 1, ..., n. Thus,

$$B:=\{x^i\mid 0\leq i\leq n\}\cup\left\{x^iy\mid 0\leq i\leq n-\frac{m}{2}\right\}\subseteq \mathcal{L}(n(x)_\infty).$$

As $\{1, y\}$ is linearly independent over K(x) and x is transcendental over K, the set B is linearly independent over K. Therefore,

dim
$$n(x)_{\infty} \ge |B| = (n+1) + \left(n - \left\lceil \frac{m}{2} \right\rceil + 1\right) = 2n + 2 - \left\lceil \frac{m}{2} \right\rceil$$
.

To show the opposite inequality, first note that the extension F/K(x) is Galois (normal as [F : K(x)] = 2, separable as char $(K) \neq 2$). Then Gal $(F/K(x)) = \{id, \sigma\}$.

Clearly, $\sigma(x) = x$ (as σ fixes K(x)). Furthermore, the minimal polynomial of y over K(x) is $X^2 - d$ and its roots are $\pm y$, so $\sigma(y) = -y$. In particular, by Proposition 7,

$$\sigma(\mathcal{L}(n(x)_{\infty})) = \mathcal{L}(n(\sigma(x))_{\infty}) = \mathcal{L}(n(x)_{\infty}).$$
(3)

Now, suppose $z \in F$ is in $\mathcal{L}(n(x)_{\infty})$. We can write z = f + gy for $f, g \in K(x)$, so that $\sigma(z) = f - gy$. By (3) we also have $\sigma(z) \in \mathcal{L}(n(x)_{\infty})$. Thus,

$$f=\frac{1}{2}(z+\sigma(z))\in\mathcal{L}(n(x)_{\infty})$$

and

$$f^2 - dg^2 = z\sigma(z) \in \mathcal{L}(2n(x)_\infty).$$

By Lemma 6, we get that $f \in K[x]$ and deg $f \le n$, and similarly $f^2 - dg^2 \in K[x]$ has degree at most 2n.

In particular, $dg^2 \in K[x]$ and $\deg(dg^2) \leq 2n$. Since d is square-free it must be that $g \in K[x]$. Hence

$$\deg(dg^2) \leq 2n \implies m+2\deg g \leq 2n \implies \deg g \leq n-\frac{m}{2}.$$

- m

Thus,
$$z = f + gy = \sum_{j=0}^{n} \alpha_j x^j + \sum_{i=0}^{n-\lfloor \frac{m}{2} \rfloor} \beta_i x^i y$$
. Therefore
 $\mathcal{L}(n(x)_{\infty}) \subseteq \operatorname{Span}_{K}(B) \implies \dim n(x)_{\infty} \leq |B| = 2n + 2 - \left\lceil \frac{m}{2} \right\rceil$

All together, we get that dim $n(x)_{\infty} = 2n + 2 - \lfloor \frac{m}{2} \rfloor$, and so B is a K-basis of $\mathcal{L}(n(x)_{\infty})$.

The genus

Theorem 9

Let F/K be a function field. Assume that there exists $x \in F \setminus K$ such that [F : K(x)] = 2 and that $char(K) \neq 2$. Let $y \in F$ be such that F = K(x, y) and $y^2 = d(x)$ for some square-free $d \in K[X]$ of degree $m \ge 1$. Then the genus of F/K is given by

$$g = \left\lceil \frac{m}{2} \right\rceil - 1 = \begin{cases} \frac{m-2}{2} & m \text{ even} \\ \frac{m-1}{2} & m \text{ odd.} \end{cases}$$

Proof.

Recall deg $(x)_{\infty} = [F : K(x)] = 2$. Thus, by Riemann-Roch, for a large enough n,

$$2n+2-\left\lceil\frac{m}{2}\right\rceil=\dim n(x)_{\infty}=\deg n(x)_{\infty}-g+1=2n-g+1.$$