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Let F/K be a function field such that
Q [F: K(x)] =2 for some x € F\ K
Q@ char(K) #2

We'll be interested in the following questions:
@ Can we characterize these function fields?
e What is the Riemann-Roch space £(n(x)s), for n € N?
e What is its dimension dim n(x)so 7

@ What is the genus g?
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Degree 2 Extensions

Let K be a field. A polynomial g € K[X] is square-free if p> { g in
K[X], for every p € K[X] with degp > 1.

Let F/K be a function field. Assume that there exists x € F \ K
such that [F : K(x)] = 2 and that char(K) # 2. Then there exists
y € F such that F = K(x,y) and y? = d(x) for some square-free
d € K[X] of degree at least 1.

Let y1 € F\ K(x). Then1 < [K(x)(»1) : K(x)] < [F : K(x)] =2
so F = K(x,y1) and y? + by1 + ¢ = 0 for some b, c € K(x).
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Degree 2 Extension

As char(K) # 2, completing the square gives

b\? B?
<YI+2) :Z—C.

Let yp :=y1 + 5. Then K(x,y2) = K(x,y1) = F and y3 = £ for
f.g € K[x]. Then y3 := gy» satisfies K(x,y3) = K(x,y2) = F and

Vs = (gn2)? = g%y3 = gf = h e K[x].

Note that h is neither in K nor a square in K|[x] (otherwise

y3 € K[x] and K(x,y3) = K(x) # F). To conclude, let

h = pi™---p be a decomposition of h to irreducible factors in
K[x] (so at least one m; is odd). Let p := p1Lm1/2J - phm/2
Then y = % € F satisfies the assertions. O
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For example, if y2 = x3(x + 1)(2x + 1)* we take

y = Y3
©ox(2x +1)?

(clearly K(x,y3) = K(x,y)).

= y2:x(x+1)
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Conversely, we have

Let K be a field with char(K) # 2. Assume F = K(x,y) where x
is transcendental over K and y? = d(x) for some square-free

d € K[x] of degree at least 1. Then F/K is a function field with
[F:K(x)] =2

Left as an exercise.

In the above claim, it is necessary that d(x) be square-free. Indeed,
consider K = F3 and F = K(x,y) where y?> = —(x* — x> +1).

In PS 1 you showed that K is not algebraically closed in F, so
F/K is not a function field. Note that in this case,

d(x) = 7(X4 +2x% + 1) = f(xz + 1)2.
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Some preparations

Let F/K be a function field, x € F\ K and 0 # f(X) € K[X].
Then
O (X))o and (f(x))o have disjoint supports.

Q@ (f(x))oo = deg(f) - (x)oo-

If f € K* this is trivial. Otherwise, f = >_"_, cix' where
n=deg(f)>1. LetQD# J={i:ci#0} andp € P. Then

(x) 2 0 = 1y(F(x)) > min{vp(cix)} = min{ivg(x)} > 0,

(x) <0 = 1y(f(x)) = rl_neig{il/p(x)} = nyp(x) <0

and both parts easily follow.
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Some preparations

Let F/K be a function field. Let x € F\ K and

0#4r= 283 € K(x) such that f, f, € K[X] are coprime. Then,

Q (r) = (A(x))o — (f2(x))o + (deg 2 — deg 1) - (X)oo-
Q (X)oo, (fi(x))o, (f2(x))o are pairwise disjoint.
@ ForallneZ,

re L(n(x)s) < degfi <nandfh e K*.

Proof of (1).

By Claim 5, for i = 1,2 we have
(fi(x)) = (fi(x))o = (£i(x))oo = (fi(x))o — deg(f) - (x)oo-
Substitution in (r) = (fi(x)) — (f2(x)) gives the desired result. []
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Some preparations

Proof of (2).

By Claim 5, (x)oo and (fi(x))o are disjoint for j = 1,2. It remains
to show that (f1(x))o and (f2(x))o are disjoint.

Suppose p € P is such that v,(fi(x)), vp(f2(x)) > 0. Then
vp(x) > 0, and so for every g(X) € K[X] we have v,(g(x)) > 0.

As f; and f, are coprime, there exist g1, g2 € K[X] such that
fig1 + fbgo = 1. Thus,

0 =1p(1) = vp(fig1 + £282) > min(vy(frg1), vp(f282))-

However, v;,(figi) = v, (fi) + vp(gi) > 0, a contradiction. O
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Some preparations

Proof of (3).
Let n € Z. Then r € L(n(x)s) <= (r) + n(x)s >0, i.e. iff

(A(x))o = (f2(x))o + (n+ deg , —degfi) - (x)oo 2 0. (1)

Now, (f1(x))o, (f2(x))o and (x)oc are pairwise disjoint, so (1) holds
iff
(f2(x))o =0 and n+degf, —degf > 0.

This holds iff f,(x) € K* (so degf, =0) and n—degf; >0, i.e.

degfi <n and £, € K*.
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Some preparations

Let 0 € Aut(F/K). Then o induces a bijection o: P — P

pr=op

where op € P is the prime divisor with Oy, = 0(Oy).

Let 0 € Aut(F/K) and let D be the divisors group of F /K.

© The induced bijection o: P — P can be extended to a group
isomorphism o: D — D.

@ Forevery x € F, o((x)) = (c(x)) and o((x)s0) = (0(X))o-
@ Foreverya € D, L(oa) = o(L(a)).

Left as an exercise.
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The space £(n(x)x0)

Lemma 8

Let F/K be a function field. Assume that there exists x € F \ K
such that [F : K(x)] = 2 and that char(K) # 2. Let y € F be such
that F = K(x,y) and y? = d(x) for some square-free d € K[X] of
degree m > 1. Then for every n € N,

dim n(x)oe = 20+ 2 — [%1

Note that the existence of such y is guaranteed by Lemma 2.
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First, 2(y) = (y?) = (d(x)), so by Claim 5,

1 1 m
(¥)oo = E(d(x))Oo =5 degd - (X)oo = E(X)oo.
Hence for i € N,

(x'y) = i(x) + (¥) = i(x)o = i(x)os + (¥)o = (¥)oo
= i(xo = (i +3) (oe + ¥)o-

Thus, an element x'y is in £(n(x)so) iff
0 < (x'y) + n(x)eo = i(x)o + <n i E) s+ (o, (2)

By claim 5, the supports of (x)s and (y)o = 3(d(x))o are disjoint
(and so are those of (x)« and (x)o), so (2) holds iffi < n— 7.
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Now, by Lemma 6 we also have x' € L(n(x)x) for i =0,1,...,n.
Thus,

B;:{xi\Ogign}u{xiy\OSign—g}gﬁ(n(x)oo).

As {1,y} is linearly independent over K(x) and x is transcendental
over K, the set B is linearly independent over K. Therefore,

dim n(x)eo > |B\:(n+1)+(n— g] +1> —2n+2- [g]

To show the opposite inequality, first note that the extension
F/K(x) is Galois (normal as [F : K(x)] = 2, separable as
char(K) # 2). Then Gal(F/K(x)) = {id,o}.
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Proof.

Clearly, o(x) = x (as o fixes K(x)). Furthermore, the minimal
polynomial of y over K(x) is X2 — d and its roots are +y, so
o(y) = —y. In particular, by Proposition 7,

a(£L(n(x)e0)) = L{n((x))oo) = L(n(x)o0)- (3)

Now, suppose z € F is in £(n(x)s). We can write z = f + gy for
f,g € K(x), so that o(z) = f — gy. By (3) we also have
0(z) € L(n(x)eo). Thus,

e

and
2 _ dg2 = z0(z) € L(2n(x)oo)-
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Proof.

By Lemma 6, we get that f € K[x] and deg f < n, and similarly
f2 — dg? € K[x] has degree at most 2n.

In particular, dg? € K[x] and deg(dg?) < 2n. Since d is
square-free it must be that g € K[x]. Hence

deg(dg?) <2n = m+2degg <2n — degggn—g.

Thus, z=f + gy =7 ga;x + Z?:_o[ﬂ Bix"y. Therefore

L(n(x)s0) C Spank(B) = dim n(x)eo < |B| =2n+2 — g]

All together, we get that dim n(x)oo =2n+2 — [%1 and so B is
a K-basis of £(n(x)o)- O
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Let F/K be a function field. Assume that there exists x € F \ K
such that [F : K(x)] = 2 and that char(K) # 2. Let y € F be such
that F = K(x,y) and y? = d(x) for some square-free d € K[X] of
degree m > 1. Then the genus of F /K is given by

_{m" 1— mT_2 m even
ET1217 T\ moodd

Recall deg(x)so = [F : K(x)] = 2. Thus, by Riemann-Roch, for a
large enough n,

2n+2 — [g—‘ =dimn(x)s =degn(x)oc —g+1=2n—g+1.

Tomer Manket Degree 2 Extensions of K(x)



	Degree 2 extensions

