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Let F/K be a function field such that

1 [F : K (x)] = 2 for some x ∈ F \ K
2 char(K ) ̸= 2

We’ll be interested in the following questions:

Can we characterize these function fields?

What is the Riemann-Roch space L(n(x)∞), for n ∈ N?
What is its dimension dim n(x)∞ ?

What is the genus g?
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Degree 2 Extensions

Definition 1

Let K be a field. A polynomial g ∈ K [X ] is square-free if p2 ∤ g in
K [X ], for every p ∈ K [X ] with deg p ≥ 1.

Lemma 2

Let F/K be a function field. Assume that there exists x ∈ F \ K
such that [F : K (x)] = 2 and that char(K ) ̸= 2. Then there exists
y ∈ F such that F = K (x , y) and y2 = d(x) for some square-free
d ∈ K [X ] of degree at least 1.

Proof.

Let y1 ∈ F \ K (x). Then 1 < [K (x)(y1) : K (x)] ≤ [F : K (x)] = 2
so F = K (x , y1) and y21 + by1 + c = 0 for some b, c ∈ K (x).
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Degree 2 Extension

Proof.

As char(K ) ̸= 2, completing the square gives(
y1 +

b

2

)2

=
b2

4
− c .

Let y2 := y1 +
b
2 . Then K (x , y2) = K (x , y1) = F and y22 = f

g for
f , g ∈ K [x ]. Then y3 := gy2 satisfies K (x , y3) = K (x , y2) = F and

y23 = (gy2)
2 = g2y22 = gf =: h ∈ K [x ].

Note that h is neither in K nor a square in K [x ] (otherwise
y3 ∈ K [x ] and K (x , y3) = K (x) ̸= F). To conclude, let
h = pm1

1 · · · pmr
r be a decomposition of h to irreducible factors in

K [x ] (so at least one mi is odd). Let p := p
⌊m1/2⌋
1 · · · p⌊mr/2⌋

r .
Then y := y3

p ∈ F satisfies the assertions.

Tomer Manket Degree 2 Extensions of K(x)



For example, if y23 = x3(x + 1)(2x + 1)4 we take

y :=
y3

x(2x + 1)2
=⇒ y2 = x(x + 1)

(clearly K (x , y3) = K (x , y)).
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Conversely, we have

Claim 3

Let K be a field with char(K ) ̸= 2. Assume F = K (x , y) where x
is transcendental over K and y2 = d(x) for some square-free
d ∈ K [x ] of degree at least 1. Then F/K is a function field with
[F : K (x)] = 2.

Proof.

Left as an exercise.

Remark 4

In the above claim, it is necessary that d(x) be square-free. Indeed,
consider K = F3 and F = K (x , y) where y2 = −(x4 − x2 + 1).
In PS 1 you showed that K is not algebraically closed in F , so
F/K is not a function field. Note that in this case,

d(x) = −(x4 + 2x2 + 1) = −(x2 + 1)2.
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Some preparations

Claim 5

Let F/K be a function field, x ∈ F \ K and 0 ̸= f (X ) ∈ K [X ].
Then

1 (x)∞ and (f (x))0 have disjoint supports.

2 (f (x))∞ = deg(f ) · (x)∞.

Proof.

If f ∈ K× this is trivial. Otherwise, f =
∑n

i=0 cix
i where

n = deg(f ) ≥ 1. Let ∅ ≠ J = {i : ci ̸= 0} and p ∈ P. Then

νp(x) ≥ 0 =⇒ νp(f (x)) ≥ min
i∈J

{νp(cix i )} = min
i∈J

{iνp(x)} ≥ 0,

νp(x) < 0 =⇒ νp(f (x)) = min
i∈J

{iνp(x)} = nνp(x) < 0

and both parts easily follow.
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Some preparations

Lemma 6

Let F/K be a function field. Let x ∈ F \ K and

0 ̸= r = f1(x)
f2(x)

∈ K (x) such that f1, f2 ∈ K[X ] are coprime. Then,

1 (r) = (f1(x))0 − (f2(x))0 + (deg f2 − deg f1) · (x)∞.

2 (x)∞, (f1(x))0, (f2(x))0 are pairwise disjoint.

3 For all n ∈ Z,

r ∈ L(n(x)∞) ⇐⇒ deg f1 ≤ n and f2 ∈ K×.

Proof of (1).

By Claim 5, for i = 1, 2 we have

(fi (x)) = (fi (x))0 − (fi (x))∞ = (fi (x))0 − deg(fi ) · (x)∞.

Substitution in (r) = (f1(x))− (f2(x)) gives the desired result.
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Some preparations

Proof of (2).

By Claim 5, (x)∞ and (fi (x))0 are disjoint for i = 1, 2. It remains
to show that (f1(x))0 and (f2(x))0 are disjoint.

Suppose p ∈ P is such that νp(f1(x)), νp(f2(x)) > 0. Then
νp(x) ≥ 0, and so for every g(X ) ∈ K [X ] we have νp(g(x)) ≥ 0.

As f1 and f2 are coprime, there exist g1, g2 ∈ K [X ] such that
f1g1 + f2g2 = 1. Thus,

0 = νp(1) = νp(f1g1 + f2g2) ≥ min(νp(f1g1), νp(f2g2)).

However, νp(figi ) = νp(fi ) + νp(gi ) > 0, a contradiction.
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Some preparations

Proof of (3).

Let n ∈ Z. Then r ∈ L(n(x)∞) ⇐⇒ (r) + n(x)∞ ≥ 0, i.e. iff

(f1(x))0 − (f2(x))0 + (n + deg f2 − deg f1) · (x)∞ ≥ 0. (1)

Now, (f1(x))0, (f2(x))0 and (x)∞ are pairwise disjoint, so (1) holds
iff

(f2(x))0 = 0 and n + deg f2 − deg f1 ≥ 0.

This holds iff f2(x) ∈ K× (so deg f2 = 0) and n − deg f1 ≥ 0, i.e.

deg f1 ≤ n and f2 ∈ K×.
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Some preparations

Let σ ∈ Aut(F/K ). Then σ induces a bijection σ : P → P

p 7→ σp

where σp ∈ P is the prime divisor with Oσp = σ(Op).

Proposition 7

Let σ ∈ Aut(F/K ) and let D be the divisors group of F/K.

1 The induced bijection σ : P → P can be extended to a group
isomorphism σ : D → D.

2 For every x ∈ F , σ((x)) = (σ(x)) and σ((x)∞) = (σ(x))∞.

3 For every a ∈ D, L(σa) = σ(L(a)).

Proof.

Left as an exercise.
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The space L(n(x)∞)

Lemma 8

Let F/K be a function field. Assume that there exists x ∈ F \ K
such that [F : K (x)] = 2 and that char(K ) ̸= 2. Let y ∈ F be such
that F = K (x , y) and y2 = d(x) for some square-free d ∈ K [X ] of
degree m ≥ 1. Then for every n ∈ N,

dim n(x)∞ = 2n + 2−
⌈m
2

⌉
.

Note that the existence of such y is guaranteed by Lemma 2.
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Proof.

First, 2(y) = (y2) = (d(x)), so by Claim 5,

(y)∞ =
1

2
(d(x))∞ =

1

2
· deg d · (x)∞ =

m

2
(x)∞.

Hence for i ∈ N,

(x iy) = i(x) + (y) = i(x)0 − i(x)∞ + (y)0 − (y)∞

= i(x)0 −
(
i +

m

2

)
(x)∞ + (y)0.

Thus, an element x iy is in L(n(x)∞) iff

0 ≤ (x iy) + n(x)∞ = i(x)0 +
(
n − i − m

2

)
(x)∞ + (y)0. (2)

By claim 5, the supports of (x)∞ and (y)0 =
1
2(d(x))0 are disjoint

(and so are those of (x)∞ and (x)0), so (2) holds iff i ≤ n − m
2 .
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Proof.

Now, by Lemma 6 we also have x i ∈ L(n(x)∞) for i = 0, 1, . . . , n.

Thus,

B := {x i | 0 ≤ i ≤ n} ∪
{
x iy | 0 ≤ i ≤ n − m

2

}
⊆ L(n(x)∞).

As {1, y} is linearly independent over K (x) and x is transcendental
over K, the set B is linearly independent over K. Therefore,

dim n(x)∞ ≥ |B| = (n + 1) +
(
n −

⌈m
2

⌉
+ 1

)
= 2n + 2−

⌈m
2

⌉
.

To show the opposite inequality, first note that the extension
F/K (x) is Galois (normal as [F : K (x)] = 2, separable as
char(K ) ̸= 2). Then Gal(F/K (x)) = {id , σ}.
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Proof.

Clearly, σ(x) = x (as σ fixes K(x)). Furthermore, the minimal
polynomial of y over K (x) is X 2 − d and its roots are ±y, so
σ(y) = −y. In particular, by Proposition 7,

σ(L(n(x)∞)) = L(n(σ(x))∞) = L(n(x)∞). (3)

Now, suppose z ∈ F is in L(n(x)∞). We can write z = f + gy for
f , g ∈ K (x), so that σ(z) = f − gy. By (3) we also have
σ(z) ∈ L(n(x)∞). Thus,

f =
1

2
(z + σ(z)) ∈ L(n(x)∞)

and
f 2 − dg2 = zσ(z) ∈ L(2n(x)∞).
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Proof.

By Lemma 6, we get that f ∈ K[x ] and deg f ≤ n, and similarly
f 2 − dg2 ∈ K[x ] has degree at most 2n.

In particular, dg2 ∈ K [x ] and deg(dg2) ≤ 2n. Since d is
square-free it must be that g ∈ K[x ]. Hence

deg(dg2) ≤ 2n =⇒ m + 2deg g ≤ 2n =⇒ deg g ≤ n − m

2
.

Thus, z = f + gy =
∑n

j=0 αjx
j +

∑n−⌈m
2
⌉

i=0 βix
iy . Therefore

L(n(x)∞) ⊆ SpanK (B) =⇒ dim n(x)∞ ≤ |B| = 2n + 2−
⌈m
2

⌉
.

All together, we get that dim n(x)∞ = 2n + 2−
⌈
m
2

⌉
, and so B is

a K -basis of L(n(x)∞).
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The genus

Theorem 9

Let F/K be a function field. Assume that there exists x ∈ F \ K
such that [F : K (x)] = 2 and that char(K ) ̸= 2. Let y ∈ F be such
that F = K (x , y) and y2 = d(x) for some square-free d ∈ K [X ] of
degree m ≥ 1. Then the genus of F/K is given by

g =
⌈m
2

⌉
− 1 =

{
m−2
2 m even

m−1
2 m odd.

Proof.

Recall deg(x)∞ = [F : K (x)] = 2. Thus, by Riemann-Roch, for a
large enough n,

2n + 2−
⌈m
2

⌉
= dim n(x)∞ = deg n(x)∞ − g + 1 = 2n − g + 1.
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