Algebraic Geometric Codes Recitation 01

Shir Peleg

Tel Aviv University

February 23, 2022

Commutative algebra - Basic definitions

Definition

A commutative ring with unity is a set R equipped with two binary operations \cdot , + such that R is abelian in respect to both operators, and there is $1 \in R$ such that for all $x \in R$, $1 \cdot x = x$.

Commutative algebra - Basic definitions

Definition

A commutative ring with unity is a set R equipped with two binary operations \cdot , + such that R is abelian in respect to both operators, and there is $1 \in R$ such that for all $x \in R$, $1 \cdot x = x$.

Definition

An *Ideal* in a ring R is a subset $I \subseteq R$, that is a subgroup under addition, and closed under multiplication of any ring element. We denote $I \triangleleft R$.

Commutative algebra - Basic definitions

Definition

A commutative ring with unity is a set R equipped with two binary operations \cdot , + such that R is abelian in respect to both operators, and there is $1 \in R$ such that for all $x \in R$, $1 \cdot x = x$.

Definition

An *Ideal* in a ring R is a subset $I \subseteq R$, that is a subgroup under addition, and closed under multiplication of any ring element. We denote $I \triangleleft R$.

Definition

An ideal $I \triangleleft R$ is called prime if $\forall a, b \in R \ ab \in I \iff a \in I \lor b \in I$. We denote with Spec(R) the set of all prime ideals in R.

An ideal $I \triangleleft R$ is called maximal if $I \neq R$ and there is no $J \triangleleft R$ such that $J \neq R$ and $I \subsetneq J$. We denote with MaxSpec(R) the set of all maximal ideals in R.

An ideal $I \triangleleft R$ is called maximal if $I \neq R$ and there is no $J \triangleleft R$ such that $J \neq R$ and $I \subsetneq J$. We denote with MaxSpec(R) the set of all maximal ideals in R.

An ideal $I \triangleleft R$ is called maximal if $I \neq R$ and there is no $J \triangleleft R$ such that $J \neq R$ and $I \subsetneq J$. We denote with MaxSpec(R) the set of all maximal ideals in R.

Definition

An ideal $I \triangleleft R$ is called principal if there is $r \in R$ such that $I = (r) = \{ar \mid a \in R\} := rR$. A maximal principal ideal is an ideal that is maximal in respect to all principal ideals.

Prime ideals and rings

Claim

P is prime $\iff R/P$ is a domain.

Proof.

We will show that P is not prime $\iff R/P$ is not a domain.

Prime ideals and rings

Claim

P is prime $\iff R/P$ is a domain.

Proof.

We will show that P is not prime $\iff R/P$ is not a domain. P is not prime \iff there are a, b such that $ab \in P$ and $a, b \notin P \iff$ $ab + P = 0, a + P, b + P \neq 0$ in $R/P \iff R/P$ is not a domain.

Prime ideals and rings

Claim

P is prime $\iff R/P$ is a domain.

Proof.

We will show that P is not prime $\iff R/P$ is not a domain. P is not prime \iff there are a, b such that $ab \in P$ and $a, b \notin P \iff$ $ab + P = 0, a + P, b + P \neq 0$ in $R/P \iff R/P$ is not a domain.

Home exercise

P is maximal $\iff R/P$ is a field.

Corollary

Every maximal ideal is prime. I.e $MaxSpec(R) \subseteq Spec(R)$

Shir Peleg Algebraic Geometric Codes

Let E/F, b a filed extension. Let $\alpha \in E$, we say that α is algebraic over F if there is a (irreducible) polynomial $p_{\alpha} \in F[x]$ such that $p_{\alpha}(\alpha) = 0$. We say that the extension E/F, is an algebraic extension if all the elements in E are algebraic over F.

For now assume K is algebraically closed. We want to proof that

$$\mathsf{MaxSpec}(K[x, y]) = \{(x - a, y - b) | a, b \in K\}.$$

Claim

$$MaxSpec(K[x]) = \{(x - a) | a \in K\}.$$

Proof Sketch

 We show that every ideal in K[x] is principle, i.e generated by on element. Indeed, let I ⊲ K[x] and let d be a polynomial of minimal degree in I, then I = (d). Proof using euclidean algorithm.

For now assume K is algebraically closed. We want to proof that

$$\mathsf{MaxSpec}(K[x,y]) = \{(x-a, y-b) | a, b \in K\}.$$

Claim

$$MaxSpec(K[x]) = \{(x - a) | a \in K\}.$$

Proof Sketch

 We show that every ideal in K[x] is principle, i.e generated by on element. Indeed, let I ⊲ K[x] and let d be a polynomial of minimal degree in I, then I = (d). Proof using euclidean algorithm.

•
$$(p) \subseteq (q) \iff q$$
 divides p .

For now assume K is algebraically closed. We want to proof that

$$\mathsf{MaxSpec}(K[x,y]) = \{(x-a, y-b) | a, b \in K\}.$$

Claim

$$\mathsf{MaxSpec}(\mathcal{K}[x]) = \{(x - a) | a \in \mathcal{K}\}.$$

Proof Sketch

- We show that every ideal in K[x] is principle, i.e generated by on element. Indeed, let I ⊲ K[x] and let d be a polynomial of minimal degree in I, then I = (d). Proof using euclidean algorithm.
- $(p) \subseteq (q) \iff q$ divides p.
- $Spec(K[x]) = MaxSpec(K[x]) = \{p \in K[x] | p \text{ is irreducible}\}.$

Claim

$$\{(x-a,y-b)|a,b\in K\}\subseteq\mathsf{MaxSpec}(K[x,y])$$

$$\{(x-a,y-b)|a,b\in K\}\subseteq \mathsf{MaxSpec}(K[x,y])$$

Proof.

It is enough to show that K[x, y]/(x - a, y - b) is a field. Indeed,

$$K[x,y]/(x-a,y-b) \sim K$$
 via $\varphi(p+(x-a,y-b)) = p(a,b).$

$$\{(x-a,y-b)|a,b\in K\}\subseteq\mathsf{MaxSpec}(K[x,y])$$

Proof.

It is enough to show that K[x, y]/(x - a, y - b) is a field. Indeed,

$$K[x,y]/(x-a,y-b) \sim K$$
 via $\varphi(p+(x-a,y-b)) = p(a,b)$.

The only thing that we need to show that φ is an injection, i.e if g(a, b) = 0then $g \in (x - a, y - b)$. This can be done using the Taylor expansion of g at the point (a, b).

Claim

Let $M \in MaxSpec(F[x, y])$, then M is not principle.

Proof.

Consider I = (f) we will show that $I \notin MaxSpec(F)$.

Claim

Let $M \in MaxSpec(F[x, y])$, then M is not principle.

Proof.

Consider I = (f) we will show that $I \notin MaxSpec(F)$. We can assume f is irreducible as otherwise the ideal is not prime.

Claim

Let $M \in MaxSpec(F[x, y])$, then M is not principle.

Proof.

Consider I = (f) we will show that $I \notin MaxSpec(F)$. We can assume f is irreducible as otherwise the ideal is not prime. From Schwartz-Zipple lemma we can show that $\exists a, b \in \overline{F}$ s.t f(a, b) = 0 (write $f \in F[x][y]$, choose a non zero value for the coefficient of the leading monomial).

Claim

Let $M \in MaxSpec(F[x, y])$, then M is not principle.

Proof.

Consider I = (f) we will show that $I \notin MaxSpec(F)$. We can assume f is irreducible as otherwise the ideal is not prime. From Schwartz-Zipple lemma we can show that $\exists a, b \in \overline{F}$ s.t f(a, b) = 0 (write $f \in F[x][y]$, choose a non zero value for the coefficient of the leading monomial). We know that in $\overline{F}[x, y]$, both $f, p_a \in (x - a, y - b)$ thus $f, p_a \in (x - a, y - b) \cap F[x, y]$ which is a proper ideal containing f. If we assume that I is maximal we obtain $p_a \in I$. This is a contradiction.

Claim

Let $M \in MaxSpec(F[x, y])$, then M is not principle.

Proof.

Consider I = (f) we will show that $I \notin MaxSpec(F)$. We can assume f is irreducible as otherwise the ideal is not prime. From Schwartz-Zipple lemma we can show that $\exists a, b \in \overline{F}$ s.t f(a, b) = 0 (write $f \in F[x][y]$, choose a non zero value for the coefficient of the leading monomial). We know that in $\overline{F}[x, y]$, both $f, p_a \in (x - a, y - b)$ thus $f, p_a \in (x - a, y - b) \cap F[x, y]$ which is a proper ideal containing f. If we assume that I is maximal we obtain $p_a \in I$. This is a contradiction.

Indeed, if $p_a = g \cdot f$ then $f \in F[x]$, which in turn implies that F[x, y]/(f) = (F[x]/f)[y] which is not a field, in contradiction.

Let A be a UFD, and M be a non principle ideal in MaxSpec(A[x]) then $M \cap A \neq (0)$.

Proof.

Shir Peleg Algebraic Geometric Codes

Let A be a UFD, and M be a non principle ideal in MaxSpec(A[x]) then $M \cap A \neq (0)$.

Proof.

Assume towards a contradiction that $M \cap A = (0)$. Consider the quotient map:

$$\varphi: A[x] \to A[x]/M := L.$$

Let A be a UFD, and M be a non principle ideal in MaxSpec(A[x]) then $M \cap A \neq (0)$.

Proof.

Assume towards a contradiction that $M \cap A = (0)$. Consider the quotient map:

$$\varphi: A[x] \to A[x]/M := L.$$

From the assumption $\varphi|_A$ is an injection. Denote K = Frac(A). We can extend $\tilde{\varphi} : K[x] \to L$, via $\tilde{\varphi}(\sum \frac{a_i}{b_i} x^i) = \sum \frac{\varphi(a_i)}{\varphi(b_i)} \varphi(x^i)$.

Let A be a UFD, and M be a non principle ideal in MaxSpec(A[x]) then $M \cap A \neq (0)$.

Proof.

Assume towards a contradiction that $M \cap A = (0)$. Consider the quotient map:

$$\varphi: A[x] \to A[x]/M := L.$$

From the assumption $\varphi|_A$ is an injection. Denote K = Frac(A). We can extend $\tilde{\varphi} : K[x] \to L$, via $\tilde{\varphi}(\sum \frac{a_i}{b_i} x^i) = \sum \frac{\varphi(a_i)}{\varphi(b_i)} \varphi(x^i)$. Therefore $M \subseteq Ker(\tilde{\varphi}) = (f_1)$. W.l.o.g. $f_1 \in A[x]$.

Let A be a UFD, and M be a non principle ideal in MaxSpec(A[x]) then $M \cap A \neq (0)$.

Proof.

Assume towards a contradiction that $M \cap A = (0)$. Consider the quotient map:

$$\varphi: A[x] \to A[x]/M := L.$$

From the assumption $\varphi|_A$ is an injection. Denote K = Frac(A). We can extend $\tilde{\varphi} : K[x] \to L$, via $\tilde{\varphi}(\sum \frac{a_i}{b_i} x^i) = \sum \frac{\varphi(a_i)}{\varphi(b_i)} \varphi(x^i)$. Therefore $M \subseteq Ker(\tilde{\varphi}) = (f_1)$. W.l.o.g. $f_1 \in A[x]$. Let $g \in M \subseteq (f_1)$, $f_1|g$ in K[x]

Let A be a UFD, and M be a non principle ideal in MaxSpec(A[x]) then $M \cap A \neq (0)$.

Proof.

Assume towards a contradiction that $M \cap A = (0)$. Consider the quotient map:

$$\varphi: A[x] \to A[x]/M := L.$$

From the assumption $\varphi|_A$ is an injection. Denote K = Frac(A). We can extend $\tilde{\varphi} : K[x] \to L$, via $\tilde{\varphi}(\sum \frac{a_i}{b_i}x^i) = \sum \frac{\varphi(a_i)}{\varphi(b_i)}\varphi(x^i)$. Therefore $M \subseteq Ker(\tilde{\varphi}) = (f_1)$. W.l.o.g. $f_1 \in A[x]$. Let $g \in M \subseteq (f_1)$, $f_1|g$ in K[x] from Gausses lemma, the same holds in A[x].

Let A be a UFD, and M be a non principle ideal in MaxSpec(A[x]) then $M \cap A \neq (0)$.

Proof.

Assume towards a contradiction that $M \cap A = (0)$. Consider the quotient map:

$$\varphi: A[x] \to A[x]/M := L.$$

From the assumption $\varphi|_A$ is an injection. Denote K = Frac(A). We can extend $\tilde{\varphi} : K[x] \to L$, via $\tilde{\varphi}(\sum \frac{a_i}{b_i}x^i) = \sum \frac{\varphi(a_i)}{\varphi(b_i)}\varphi(x^i)$. Therefore $M \subseteq Ker(\tilde{\varphi}) = (f_1)$. W.l.o.g. $f_1 \in A[x]$. Let $g \in M \subseteq (f_1)$, $f_1|g$ in K[x] from Gausses lemma, the same holds in A[x]. We deduce that $M = (f_1)$ in contradiction.

$$\mathsf{MaxSpec}(K[x,y]) = \{(x-a,y-b)|a,b \in K\}.$$

Proof.

$$\mathsf{MaxSpec}(K[x,y]) = \{(x-a,y-b)|a,b \in K\}.$$

Proof.

We already showed one inclusion.

$$\mathsf{MaxSpec}(K[x,y]) = \{(x-a,y-b)|a,b\in K\}.$$

Proof.

We already showed one inclusion. For the other direction, let $M \in MaxSpec(K[x, y])$. From the two previous claims $M \cap K[x] \neq (0)$ thus $M \cap K[x] = (x - a)$.

$$\mathsf{MaxSpec}(K[x,y]) = \{(x-a,y-b)|a,b\in K\}.$$

Proof.

We already showed one inclusion. For the other direction, let $M \in \text{MaxSpec}(K[x, y])$. From the two previous claims $M \cap K[x] \neq (0)$ thus $M \cap K[x] = (x - a)$. Therefore, $(x - a) \subseteq M$,

$$\mathsf{MaxSpec}(K[x,y]) = \{(x-a,y-b)|a,b\in K\}.$$

Proof.

We already showed one inclusion. For the other direction, let $M \in \text{MaxSpec}(K[x, y])$. From the two previous claims $M \cap K[x] \neq (0)$ thus $M \cap K[x] = (x - a)$. Therefore, $(x - a) \subseteq M$, consider $M/(x - a) \in K[x, y]/(x - a) \sim k[y]$.

$$\mathsf{MaxSpec}(K[x,y]) = \{(x-a,y-b)|a,b\in K\}.$$

Proof.

We already showed one inclusion. For the other direction, let $M \in \text{MaxSpec}(K[x, y])$. From the two previous claims $M \cap K[x] \neq (0)$ thus $M \cap K[x] = (x - a)$. Therefore, $(x - a) \subseteq M$, consider $M/(x - a) \in K[x, y]/(x - a) \sim k[y]$. This must be a maximal ideal and thus M/(x - a) = (y - b) Therefore $y - b \in M$, and M = (x - a, y - b).

Corollary

Let $f \in K[x, y]$ be an irreducible polynomial, then there is a bijection between $Z_f(K)$ and $MaxSpec(C_f)$ where $C_f = K[x, y]/(f)$.

Proof.

Corollary

Let $f \in K[x, y]$ be an irreducible polynomial, then there is a bijection between $Z_f(K)$ and $MaxSpec(C_f)$ where $C_f = K[x, y]/(f)$.

Proof.

From the third isomorphism theorem, for every $I \in K[x, y]$ $C_f/(I/(f)) = K[x, y]/I$. As there is a correspondence between the ideals of C_f and ideals in K[x, y] that contain (f), we get that $MaxSpec(C_f) = \{M \in MaxSpec(K[x, y]) \mid (f) \in M\} = \{(x - a, y - b) \mid f(a, b) = 0\}$.