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Commutative algebra - Basic definitions

Definition
A commutative ring with unity is a set R equipped with two binary operations
·,+ such that R is abelian in respect to both operators, and there is 1 ∈ R such
that for all x ∈ R , 1 · x = x .

Definition
An Ideal in a ring R is a subset I ⊆ R , that is a subgroup under addition, and
closed under multiplication of any ring element. We denote I ◁ R .

Definition
An ideal I ◁ R is called prime if ∀a, b ∈ R ab ∈ I ⇐⇒ a ∈ I ∨ b ∈ I . We
denote with Spec(R) the set of all prime ideals in R .
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Commutative algebra - Basic definitions

Definition
An ideal I ◁ R is called maximal if I ̸= R and there is no J ◁ R such that J ̸= R
and I ⊊ J . We denote with MaxSpec(R) the set of all maximal ideals in R .

Definition
An ideal I ◁ R is called principal if there is r ∈ R such that
I = (r) = {ar | a ∈ R} := rR . A maximal principal ideal is an ideal that is
maximal in respect to all principal ideals.
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Prime ideals and rings

Claim
P is prime ⇐⇒ R/P is a domain.

Proof.
We will show that P is not prime ⇐⇒ R/P is not a domain.

P is not prime
⇐⇒ there are a, b such that ab ∈ P and a, b /∈ P ⇐⇒
ab + P = 0, a + P , b + P ̸= 0 in R/P ⇐⇒ R/P is not a domain.

Home exercise
P is maximal ⇐⇒ R/P is a field.

Corollary
Every maximal ideal is prime. I.e MaxSpec(R) ⊆ Spec(R)
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Filed Extensions – algebraic elements

Definition
Let E/F , b a filed extension. Let α ∈ E , we say that α is algebraic over F if
there is a (irreducible) polynomial pα ∈ F [x ] such that pα(α) = 0.
We say that the extension E/F , is an algebraic extension if all the elements in E
are algebraic over F .
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MaxSpec of K [x , y ]

For now assume K is algebraically closed. We want to proof that

MaxSpec(K [x , y ]) = {(x − a, y − b)|a, b ∈ K}.

Claim

MaxSpec(K [x ]) = {(x − a)|a ∈ K}.

Proof Sketch
We show that every ideal in K [x ] is principle, i.e generated by on element.
Indeed, let I ◁ K [x ] and let d be a polynomial of minimal degree in I , then
I = (d). Proof using euclidean algorithm.

(p) ⊆ (q) ⇐⇒ q divides p.
Spec(K [x ]) = MaxSpec(K [x ]) = {p ∈ K [x ]|p is irreducible}.
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MaxSpec of K [x , y ]

Claim
{(x − a, y − b)|a, b ∈ K} ⊆ MaxSpec(K [x , y ])

Proof.
It is enough to show that K [x , y ]/(x − a, y − b) is a field. Indeed,

K [x , y ]/(x − a, y − b) ∼ K via φ(p + (x − a, y − b)) = p(a, b).

The only thing that we need to show that φ is an injection, i.e if g(a, b) = 0
then g ∈ (x − a, y − b). This can be done using the Taylor expansion of g at
the point (a, b).
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Maximal ideals in K [x , y ] are not principle

Claim
Let M ∈ MaxSpec(F [x , y ]), then M is not principle.

Proof.
Consider I = (f ) we will show that I /∈ MaxSpec(F ).

We can assume f is
irreducible as otherwise the ideal is not prime. From Schwartz-Zipple lemma we
can show that ∃a, b ∈ F s.t f (a, b) = 0 (write f ∈ F [x ][y ], choose a non zero
value for the coefficient of the leading monomial). We know that in F [x , y ], both
f , pa ∈ (x − a, y − b) thus f , pa ∈ (x − a, y − b) ∩ F [x , y ] which is a proper
ideal containing f . If we assume that I is maximal we obtain pa ∈ I . This is a
contradiction.
Indeed, if pa = g · f then f ∈ F [x ], which in turn implies that
F [x , y ]/(f ) = (F [x ]/f )[y ] which is not a field, in contradiction.
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Intersection with K [x ]

Claim
Let A be a UFD, and M be a non principle ideal in MaxSpec(A[x ]) then
M ∩ A ̸= (0).

Proof.

Assume towards a contradiction that M ∩ A = (0). Consider the quotient map:

φ : A[x ] → A[x ]/M := L.

From the assumption φ|A is an injection. Denote K = Frac(A). We can extend
φ̃ : K [x ] → L, via φ̃(

∑ ai
bi
x i) =

∑ φ(ai )
φ(bi )

φ(x i). Therefore M ⊆ Ker(φ̃) = (f1).
W.l.o.g. f1 ∈ A[x ]. Let g ∈ M ⊆ (f1), f1|g in K [x ] from Gausses lemma, the
same holds in A[x ]. We deduce that M = (f1) in contradiction.
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MaxSpec(K [x , y ])

Theorem

MaxSpec(K [x , y ]) = {(x − a, y − b)|a, b ∈ K}.

Proof.

We already showed one inclusion. For the other direction, let
M ∈ MaxSpec(K [x , y ]). From the two previous claims M ∩ K [x ] ̸= (0) thus
M ∩ K [x ] = (x − a). Therefore, (x − a) ⊆ M , consider
M/(x − a) ∈ K [x , y ]/(x − a) ∼ k[y ]. This must be a maximal ideal and thus
M/(x − a) = (y − b) Therefore y − b ∈ M , and M = (x − a, y − b).
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MaxSpec(Cf )

Corollary
Let f ∈ K [x , y ] be an irreducible polynomial, then there is a bijection between
Zf (K ) and MaxSpec(Cf ) where Cf = K [x , y ]/(f ).

Proof.

From the third isomorphism theorem, for every I ∈ K [x , y ]
Cf /(I/(f )) = K [x , y ]/I . As there is a correspondence between the ideals of Cf

and ideals in K [x , y ] that contain (f ), we get that MaxSpec(Cf ) = {M ∈
MaxSpec(K [x , y ]) | (f ) ∈ M} = {(x − a, y − b) | f (a, b) = 0}.

Shir Peleg Algebraic Geometric Codes



MaxSpec(Cf )

Corollary
Let f ∈ K [x , y ] be an irreducible polynomial, then there is a bijection between
Zf (K ) and MaxSpec(Cf ) where Cf = K [x , y ]/(f ).

Proof.
From the third isomorphism theorem, for every I ∈ K [x , y ]
Cf /(I/(f )) = K [x , y ]/I . As there is a correspondence between the ideals of Cf

and ideals in K [x , y ] that contain (f ), we get that MaxSpec(Cf ) = {M ∈
MaxSpec(K [x , y ]) | (f ) ∈ M} = {(x − a, y − b) | f (a, b) = 0}.

Shir Peleg Algebraic Geometric Codes


