Introduction to Algebraic-Geometric Codes

Spring 2019

Exercise 7

Publish Date: 02 June 19

Due Date: 16 June 19

Exercise 7.1. Let A be a Dedekind domain, and let $0 \neq I, J \triangleleft A$. For $0 \neq P \in Spec(A)$ we define $ord_P(I)$ to be the maximal $k \in \mathbb{N}$ such that $P^k \supseteq I$, or 0 if there is no such k.

- (a) Show that $J \subseteq I$ if and only if $ord_P(J) \ge ord_P(I)$, for all $P \in Spec(A)$.
- (b) The greatest common divisor ideal of I and J is defined to be the ideal of A generated by I and J. Show that $(I, J) = I + J = \prod_{P \in Spec(A)} P^{\min(ord_P(I), ord_P(J))}$.
- (c) The least common multiple ideal of I and J is defined to be the ideal $I \cap J$. Show that $I \cap J = \prod_{P \in Spec(A)} P^{\max(ord_P(I), ord_P(J))}$.

Exercise 7.2. Let $A = \mathbb{Z}[i] = \mathbb{Z}[x]/\langle x^2 + 1 \rangle$.

- (a) Show that if $p \equiv 3 \mod 4$ then pA is a prime ideal.
- (b) Factor 2A, 13A in A.

Exercise 7.3. In this exercise you should not use the characterization of surjective valuations of k(x) over k.

- (a) Let $g(x) \in k[x]$ be irreducible, prove that if a surjective valuation of k(x) over k, v, satisfies v(g) > 0then v(g) = 1 and $v = v_g$.
- (b) Let L/k be an algebraic extension, prove that $\{v \mid valuation \text{ of } L \text{ over } k\} = \{0\}.$
- (c) Prove that for every irreducible polynomial $x \neq g(x) \in k[x]$ of degree d, $v_{\frac{g(x)}{-d}} = v_{g(x)}$.