Exercise 8: Continuous Fractions,
Shor’s Assumption and QFT

1. Here we will be proving some small claims you used in the lecture about
Continuous Fractions.

First recall the algorithm:

Data: t e R,k e N
Result: [ag,...,ax_1,A] at most k + 1-long ”almost”
continuous-fractions representation of x: a; € N for 0 < i < k,

1
A€R>(],and1':a()+al+71

—=
ag + |z;
xo  x — |x];
for i=1...k do
if Ti—1 —= 0 then
| return [ag,...,a;—1]
end
a; < x4 ];
zi ¢ w0y — e
end
if ;1 == 0 then
| return [ag,...,ak—1]
end
return [ag, ..., ak—1, Tgp—1];

(a) Show that for any rational number x € Q, the remainders are always
rational x; = l;— for some bc; € N. Prove that in this case the
sequence of ¢; is strictly decreasing.

Conclude that any rational number has a finite representation in the
continuous fractions representation x = [ag, ay, . .., a,]. Where do we
need this conclusion in the analysis for Shor’s usage of the continuous
fractions algorithm? Can an irrational number z € R\ Q have such
a finite continuous fractions representation?
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(b) Let z € Rs¢ and [ao, . . ., a,] be the representation of z made by the
continuous fractions algorithm as outlined in the lecture and included
above. Show that for any 1 < i < n (note that 0 is not included),
a; > 1 (equivalently, it is not 0). Where (and for which i) did we
need this claim in the analysis we saw in the lecture?

(c) For integers ap € N,a; € N>1, denote by p(ao,- .., ar),¢(ao,- ., ax)
the reduced numerator and denominator, respectively, of the fraction
represented by [ag, . . ., ag] (reduced meaning GCD(p(ag, . - ., ar),q(ag, . ..,ax)) =
1), i, Rlavendn) oy 1

q(ao,---,ax) 0 ar+—1 '
ak

Prove that calculating the common denominators bottom-up results
in a reduced fraction, and thus in calculating p(ao, . . ., ax) and g(ag, . . ., a)-

Example: [ag,a1,a2] = ap + ﬁ = ag + wrar = G0 + e =
(araz+1)aotaz _ ag+as+acaias "
araz+1 araz+1 :
hint: Use induction on the number of arguments k + 1 of p,q. For
the induction step look at [a1,...,a;] and its relation to [ao, ..., ak].
(d) The previous subquestion allows us to understand p(ao, . . ., ar), q(ag, - . ., ag):

conclude from the previous subquestion for which ¢ € N and a; € N
the relation ¢(ag, . ..,ax) = p(ao,...,a¢) holds (for k > 1)? Use this

to prove the following recursive formula p(ao, . . ., ax) = agp(ay, -+ ,ar)+
plag, ..., a).

hint: Use the relation you found to get an equivalence of two ways to
write [ag, - . ., ak).

(e) Use the previous subquestion together with subquestion (b) to show
that g is a (weakly) increasing sequence. Where did we use this in
the lecture?

(f) Use the recursive formula from subquestion (d) to prove by induction
that

k
L3

p(ao,...,ak) = E H apay - QA —1Q5, 42 Ajp—1Q5,42 -+ Ak
£=041,...,i,€{0,....k—1}

1 +2< 4541

is the sum of all the products of the numbers where we took away
any number of consecutive pairs.

For example, we saw above that p(ag,a1,a2) = ag + a2 + apaias.
The term agajas is the product when no pairs were taken away, and
ag and ay are each a product (of one number) where we took away
one consecutive pair. Similarly we saw, p(ai,as) = 1 + ajas which
is a product of no numbers, which is 1, for taking away the only two
numbers a1, as and the term for not taking away any aias.

(g) Conclude from the previous subquestion that p(aq, . .., ar) = p(ak, ak—1, .- ., ao).
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Assume we fix some sequence of a;’s and denote by pi, := p(ao, . .., ax), g :=
q(ag,...,ar). Use the symmetry above and the recursive formula
you’ve proven to show that the following recursion formulas hold:
Pk = akPr—1 + pr—2 and gk = axqr—1 + qr—2.
Where did we use these in the lecture?

(h) Denote Ay := prqr—1 — Prk—1gk- Prove by induction on k that Ay =
(=1)F=1. (Use go = 1 as [ag] = %)
Where did we use this in the lecture?

2. Here we will prove an upper bound for the probability that the ”bad”
event happens in Shor’s algorithm:

Claim 8.1
Let N = p{* -+ p%m for different odd primes p; € N>3 and natural numbers

a; € N>y. For a uniform distribution A ~ Z%;, where on(A) denotes the
order of A in Z%; (or just o(A) where the N is c]earﬂ

. o(A)/2 — _ < -
AE%V [0(A) isodd vV A =-1 (mod N)] < =1

(a) Why is it enough for Shor’s factorisation algorithm to consider N’s
without 2 in their prime factorisation?

(b) Show that for A € Z%,if A" =1 (mod N) then on(A) | r. Conclude
that for every i € [m], 0,2 (A) | on(A).

(c) Let A € Z% be such that either oy (A) is odd or A°N(A/2 = 1
(mod N). Define d := max{c: 2° | ox(A)} to be the power of 2 in the
factorisation of A’s order in Z%; (equivalently, the maximal power of 2
that divides it), and similarly for i € [m], d; := max{c:2° | 0,0: (A)}
the power of 2 in the prime factorisation of the order of A in Z;%.
Show that Vi € [m] : d; = d.
hint: For both cases use the previous subquestion. For the case where
on(A) is even show how B =k (mod N) implies knowledge about B
(mod p$*) and think whether an r € N for which A" # 1 (mod M)
can have r | opr(A)?

(d) The Chinese remainder theorem says that the function ¢ : Z§ —
Z;?l XX Loy, defined as p(A) := (A (mod pi™),..., A (mod pfm))
is an isomorphism, and specifically it is a bijection. Thus, drawing
uniformly at random A ~ Z}; is equivalent to drawing uniformly and
independently at random its modulo remainders (A4; ~ Z;%)ie[m]'

From the previous subquestion, in order to prove the claim we need
to show that the probability of drawing all of them with the same

lie. o(A) € Ns.t. A°N(A) =1 (mod N) while A” £ 1 (mod N) for any 1 < r < on(A).
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d; is upper-bounded by Qm%l, which is equivalent to bounding the
probability to draw m — 1 of them with a specific d (after drawing
the first one which “decides” it d = dy).

Note the following two facts: a consequence of the Chinese remainder

theorem is lem (opal (A), -+, opam (A)) = on(A) and the fact that

7* 2 is cyclic. Use these (without proving them) to show that the
probablhty of a uniform draw B ~ Z* poi 10 have d; = max{c : 2¢ |

|Z o |} (the power of 2 in the prime factorlsatlon of |Z o |E|) is 3.
Conclude the claim.

hint: Take an element g* € Z;%. Divide the elements with odd k
and even k and use subquestionl (b). For the odd case look at their

order. For the even case use the fact that for any B € Z7, BlZwl =1
(mod n).

3. The QFT circuit we saw in class uses 2-qubit gates. Show that if we
want to measure the output of the QFT in the computational basis then
we can modify the circuit to use only 1-qubit gates (that are classically
controlled). Can we use your modified circuit in Shor’s algorithm?

5 ] oy a;— 17 alfl 1
Recall: |Z;?i|7pi —Pp; b; (1 _E)
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