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The model

We consider a Turing machine with four tapes:

Input tape (R,↔): Read-only, can move left and right.

Output tape (W,→): Write-only, left to right

Randomness tape (R,→): Read-only left to right

Work tape: (RW,↔), Read-write, can move left and right

Definitions and remarks

On input x , the space complexity, s(x), is the number of cells
used in the work tape (taken worst case over the randomness).

n usually denotes the input length, and
s(n) = max{s(x) | x ∈ {0, 1}n}. Typically n� s.

The randomness complexity r(x) (and r(n)) is the number of
bits read from the randomness tape on input x (and on any
length-n input, resp.).
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The model

Technicalities

Every tape has a head - a pointer to the current location on
the tape. The machine does not “remember” the head
location. If the programmer wishes to do so (and she almost
always does) then that should be done as part of the program.
In particular, the space required will be accounted for in the
space complexity.

n is typically the largest parameter (we don’t care about the
head of the randomness tape). By paying an additional
O(log n) in space, the above technicality can be ignored.

For that price, we can also maintain any constant number of
additional work tapes.
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BPL vs. L

A fundamental open problem in complexity theory: Simulate
any space s (one, or better yet, two sided error) randomized
algorithm deterministically in space O(s).

The regime s = Ω(log n) is most interesting, and s = Θ(log n)
is complete for that regime.

L stands for the class of all languages computable in
deterministic logarithmic space. BPL is the class of all
languages computable by a two-sided error randomized
algorithm in logarithmic space. RL captures one-sided error.

It is conjectured that BPL = L. The best known result due to
Saks-Zhou (from the mid 90s) gives BPL ⊆ L3/2.
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s-t connectivity

Given a graph G = (V ,E ) on n vertices and two vertices s, t,
decide whether there exists a path from s to t in G .

Solving s-t connectivity for directed graphs in space O(log n)
would imply NL = L. Savitch’s theorem (1970) gives a
solution in space O(log2 n), hence NL ⊆ L2.

Deterministically Approximating the probability a random
walk on directed graphs starting at s reaches t to within a
constant additive error in deterministic logarithmic space
would imply BPL = L.

s-t connectivity for undirected graphs in logarithmic space
using randomness is easy.

Reingold (2005) solved s-t connectivity for undirected graphs,
deterministically, in logarithmic space, proving SL = L.
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Reingold’s idea

Note that the problem is easy for G a constant degree
ω-spectral expander, where ω < 1 is a constant.

Transform the given graph G to a constant degree expander
G ′, while respecting connectivity, and use the above on G ′.

To obtain G ′ we repeatedly apply squaring (to improve
expansion) and Zig-Zag (to reduce the degree).
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The algorithm

Input. An undirected graph G = (V ,E ) on n vertices, and
s, t ∈ V .

Ingredient. H a d-regular 1
4 -spectral expander on d4 vertices with

a self loop on every vertex.

1 Transform (G , s, t) to a graph (G0, s0, t0) which is d2-regular
such that every connected component is non-bipartite.
Moreover, s, t are connected in G ⇐⇒ s0, t0 are connected
in G0.

2 For k = 1, . . . , ` = O(log n),

1 Let Gk = G 2
k−1
©z H.

2 Set sk , tk to be any two vertices in the clouds of Gk

corresponding to sk−1, tk−1.

3 Exhaustively search all paths of length O(log n) in G` from s`
and accept if one of them reach t`.
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Correctness

Let Ck denote the connected component of Gk containing sk .
Observe that Ck = C 2

k−1©z H.

C0 being connected, undirected and non-bipartite implies that
γ(C0) ≥ 1

poly(n) (problem set). Now, ω(C 2
k−1) = ω(Ck−1)2

and so
γ(C 2

k−1) = 2γ(Ck−1)− γ(Ck−1)2.

Thus,

γ(Ck) = γ(C 2
k−1©z H)

≥
(

3

4

)2 (
2γ(Ck−1)− γ(Ck−1)2

)
≥ min

(
35

32
· γ(Ck−1),

1

18

)
.
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Space analysis

The space analysis is delicate. We want to show that computing

πGk
: [Vk ]× [d2]→ [Vk ]× [d2]

can be done in space that is only constant larger compared to the
space required for computing

πGk−1
: [Vk−1]× [d2]→ [Vk−1]× [d2].

When analyzing constant space computation (or sub logarithmic
space) the statement is model dependent, and so we next specify
the exact model.

The end result is not model dependent as it is about logarithmic
space.
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Space analysis

Denote by space(G ) the amount of space required on the third
tape for evaluating πG .

Claim

If H is a graph of constant size, then

space(G 2) = space(G ) + O(1)

space(G©z H) = space(G ) + O(1).
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