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Previously: Degree 2 Extensions of K (x)

Theorem 1

Let K be a field with char(K ) ̸= 2. Assume F = K (x , y) where x is
transcendental over K and y2 = d(x) for some square-free polynomial d ∈ K [X ]
of degree m ≥ 1. Then

F/K is a function field.
[F : K (x)] = 2.

The genus of F/K is given by g =
⌈
m
2

⌉
− 1.
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Example 2
Let F = F5(x , y) where

y2 = x2 + 3

Then F/F5 is a function field with genus g =
⌈

2
2

⌉
− 1 = 0.

Example 3
Let F = F3(x , y) where

y2 = x3 − x = x(x + 1)(x − 1)

Then F/F3 is a function field with genus g =
⌈

3
2

⌉
− 1 = 2 − 1 = 1.
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Theorem 4

Let F/K be a function field. Assume that there exists x ∈ F \ K such that
[F : K (x)] = 2 and that char(K ) ̸= 2. Then there exists y ∈ F such that
F = K (x , y) and y2 = d(x) for some square-free d ∈ K [X ] of degree at least 1.

Tomer Manket Function Fields of Genus 0 or 1



Function fields of genus 0

Theorem 5
Let F/K be a function field of genus 0. Then F/K is either a rational function
field (i.e. F = K (t) for some t ∈ F \ K ), or a a quadratic extension of such a
field. In the second case, if char(K ) ̸= 2 then there exist t, u ∈ F \ K such that
F = K (t, u) and u2 = at2 + c for some a, c ∈ K×.

Proof.
Let w be a canonical divisor of F/K . We know that deg(w) = 2g − 2 = −2.
Then deg(−w) = 2 > −2 = 2g − 2, so by Riemann-Roch Theorem,

dim(−w) = deg(−w) + 1 − g = 2 + 1 − 0 = 3.

Hence there exist x , y ∈ L(−w) which are linearly independent over K .
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Proof cont.
Consider t = x

y ∈ F \ K . Since x , y ∈ L(−w) we have that

(x)−w ≥ 0 and (y)−w ≥ 0,

and so
(t) = (x)− (y) = [(x)−w]︸ ︷︷ ︸

≥0

− [(y)−w]︸ ︷︷ ︸
≥0

.

It follows that 0 ≤ (t)∞ ≤ (y)−w. Thus,

deg(t)∞ ≤ deg((y)−w) = deg(y)− degw = 0 − (−2) = 2.

Now by a theorem you proved in class,

[F : K (t)] = deg(t)∞ ≤ 2.
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Proof cont.
Hence F is either K (t) or a quadratic extension of K (t).

Now, assume [F : K (t)] = 2 and char(K ) ̸= 2. By Theorem 4, there exists
u ∈ F such that F = K (t, u) and u2 = d(t) for some square-free d ∈ K [X ] of

degree m ≥ 1. Since F/K has genus g = 0, we get that
⌈
m
2

⌉
− 1 = 0, i.e.

m = 1 or m = 2. Hence d(X ) = aX 2 + bX + c where a, b, c ∈ K and a ̸= 0 or
b ̸= 0.

If a = 0: Then u2 = bt + c (and b ̸= 0), so

t =
u2 − c

b
∈ K (u) =⇒ F = K (t, u) = K (u)

and F is a rational function field.
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Proof cont.

If a ̸= 0: Then u2 = at2 + bt + c , so by completing the square we get

u2 = a

(
t2 +

b

a
t

)
+ c = a

(
t +

b

2a

)2

+ c − b2

4a
.

Letting t ′ := t + b
2a and c ′ = c − b2

4a ∈ K , we get that

F = K (t, u) = K (t ′, u) and u2 = at ′2 + c ′.

Finally, if c ′ = 0 then u2 = at ′2, i.e.
(
u
t′

)2
= a ∈ K . But then u

t′ ∈ F

is algebraic over K , and so u
t′ ∈ K and u ∈ K (t ′). Hence in this case,

F = K (t ′, u) = K (t ′) is a rational function field.
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How can we distinguish the two possibilities?

Theorem 6
Let F/K be a function field with genus 0. Then F is a rational function field
over K iff it has a divisor of degree one.

Proof.
(⇒) : If F = K (x) then p∞ is a (prime) divisor of degree one.

(⇐): Let a be a divisor with deg a = 1. Since deg a = 1 > −2 = 2g − 2, we
get by Riemann-Roch that

dim a = deg a+ 1 − g = 1 + 1 − 0 = 2.

Thus, there exists z ∈ L(a) \ K . Then a′ := (z) + a ≥ 0. Note that a′ also has
degree 1 and dimension 2 (same as a).
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Proof cont.
In particular, there exists x ∈ L(a′) \ K . Hence (x) + a′ ≥ 0, i.e.
(x)0 − (x)∞ + a′ ≥ 0 and so (x)∞ ≤ (x)0 + a′.

As (x)0 and (x)∞ have disjoint supports and a′ ≥ 0, this implies that
(x)∞ ≤ a′. In particular, deg(x)∞ ≤ deg a′ = 1.

Finally, since x ∈ F \ K we obtain

1 ≤ [F : K (x)] = deg(x)∞ ≤ 1

so [F : K (x)] = 1, i.e. F = K (x) is a rational function field.

Remark 1
Note that we can replace “divisor" by “prime divisor" in the theorem statement.
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Example 7 (A non-rational function field of genus 0)

Let F = R(x , y) where x is transcendental over R and

y2 = −x2 − 1.

Then F/R is a function field with [F : R(x)] = 2 and genus g = 0. In addition,
each prime divisor of F/R has degree 2. By the previous theorem, F is not a
rational function field.

Remark 2
If F/K is a function field with K algebraically closed or K a finite field, then
there always exists a divisor of degree 1. So in these cases, F is rational iff g = 0.
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Function fields of genus 1

Lemma 8
Let F/K be a function field of genus g = 1. Suppose F = K (x , y) where
y2 = d(x) for d ∈ K [X ] of degree 3. Then there exists a prime divisor p of
degree 1 such that (x)∞ = 2p.

Proof.
First,

deg(x)∞ = [F : K (x)] = [K (x)(y) : K (x)] ≤ 2.

If [F : K (x)] = 1 then F = K (x) is a rational function field and so g = 0, a
contradiction. Hence deg(x)∞ = 2.
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Proof cont.
As deg(x)∞ = 2 and (x)∞ ≥ 0, there are 3 possibilities:

(x)∞ = p for some p ∈ P of deg p = 2.
(x)∞ = 2p for some p ∈ P of deg p = 1.
(x)∞ = p+ q for some p, q ∈ P with deg p = deg q = 1.

However, note that

2(y)∞ = (y2)∞ = (d(x))∞ = deg(d) · (x)∞ = 3(x)∞.

That implies that all the coefficients in (x)∞ are even. Thus, it must be that
(x)∞ = 2p for some p ∈ P of degree 1.
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Conversely, we have

Theorem 9
Let K be a field with char(K ) ̸= 2, and let F/K be a function field of genus
g = 1 that has a prime divisor p of degree 1. Then F = K (x , y) where
y2 = d(x) for a square-free d ∈ K [X ] of degree 3, and (x)∞ = 2p.

Proof.
For each n ∈ N, deg(np) = n deg p = n. Therefore, if n > 2g − 2 = 0 then by
Riemann-Roch,

dimL(np) = dim np = n + 1 − g = n.

Furthermore,
K = L(p) ⊂ L(2p) ⊂ · · · ⊂ L(np).
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Proof cont.
In particular, there exist x , y ∈ F such that

L(2p) = SpanK{1, x} and L(3p) = SpanK{1, x , y}.

Since x ∈ L(2p) \ L(p) we must have (x)∞ = 2p. Similarly, y ∈ L(3p) \ L(2p)
implies that (y)∞ = 3p. Then for i , j ∈ N we have

(x iy j)∞ = i(x)∞ + j(y)∞ = (2i + 3j)p.

It is easy to verify that

L(p) = SpanK{1} L(2p) = SpanK{1, x}
L(3p) = SpanK{1, x , y} L(4p) = SpanK{1, x , y , x2}

L(5p) = SpanK{1, x , y , x2, xy} L(6p) = SpanK{1, x , y , x2, xy , x3, y2}
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Proof cont.
Thus, there is a linear combination (with f ̸= 0)

y2 = a + bx + cy + dx2 + exy + fx3, (1)

i.e.
y2 − (ex + c)y = a + bx + dx2 + fx3. (2)

Now, as char(K ) ̸= 2 we can complete the square to get(
y − 1

2
(ex + c)

)2

= a + bx + dx2 + fx3 +
1
4
(ex + c)2. (3)

Now letting y ′ = y − 1
2(ex + c) gives y ′2 = d(x) for d ∈ K [X ] of degree 3.

Clearly, K (x , y) = K (x , y ′). Thus it remains to show that F = K (x , y) and that
d is square-free.
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Proof cont.
Indeed, we saw that deg(x)∞ = 2 and deg(y)∞ = 3 are coprime, so by Question
2 in PS 3 we obtain F = K (x , y).

Finally, assume to the contrary that d is not square-free. By (3), it has degree 3
and leading coefficient f , so it must be of the form

d(X ) = f · (X − α)2(X − β).

But then for y ′′ := y ′

x−α ∈ F we get y ′′2 = y ′2

(x−α)2 = f · (x − β). But then

F = K (x , y ′) = K (x , y ′′) = K (y ′′)

so F is a rational function field, contradicting g = 1.
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