Problem Set 1

Publish Date: January 18, 2021
Due Date: February 8, 2024 (all day long)

Note. Submissions must be made in pairs. Please type your solutions and submit them as a PDF file through Moodle. If you have any questions, feel free to send an email to Gil.

Question 1. Define a set $R \subseteq \mathbb{F}_{2}^{n}$ as δ-rigid if, for every subspace $V \subseteq \mathbb{F}_{2}^{n}$ with dimension $\frac{n}{2}$, there exists at least one element $r \in R$ that is at a distance of at least δn from all elements of V. Prove that for a sufficiently small constant $\delta>0$, a δ-rigid set of size $O(n)$ exists.

Question 2. Describe the process of deriving an infinite family of asymptotically-good binary error-correcting codes from a tree code which has a non-vanishing distance and a constant number of colors.

Question 3. Consider a connected, undirected graph $G=(V, E)$. If the adjacency matrix corresponding to G has m distinct eigenvalues, show that the diameter of G is strictly less than m. Hint: Think about the minimal polynomial of the adjacency matrix.

Question 4. Prove the expander mixing lemma. This lemma asserts that for any d-regular graph $G=(V, E)$ with n vertices and for every pair of vertex sets $S, T \subseteq V$ having densities $\alpha=\frac{|S|}{n}$ and $\beta=\frac{|T|}{n}$, respectively, the following inequality holds:

$$
\left|\frac{|E(S, T)|}{n d}-\alpha \beta\right| \leq \omega(G) \sqrt{\alpha(1-\alpha) \beta(1-\beta)}
$$

Question 5. Given a prime number p, consider the Cayley graph G on the vertex set \mathbb{Z}_{p}^{3} with the set of generators $S=\left\{\left(b, a b, a^{2} b\right) \mid a, b \in \mathbb{Z}_{p}\right\}$. What is the value of $\omega(G)$?

