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Function fields of genus 1

Let F/K be a function field of genus g = 1. Suppose F = K(x,y) where
y? = d(x) for d € K[X] of degree 3. Then there exists a prime divisor p of
degree 1 such that (x)s = 2p.

First,
deg(x)os = [F - K(x)] = [K(x)(y) : K(x)] < 2.

If [F : K(x)] =1 then F = K(x) is a rational function field and so g =0, a
contradiction. Hence deg(x)s = 2.
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Proof cont.
As deg(x)oo = 2 and (x)o > 0, there are 3 possibilities:

@ (X)oo = p for some p € P of degp = 2.
@ (X)oo = 2p for some p € P of degp = 1.
@ (X)oo = Pp + q for some p,q € P with degp = degq = 1.

However, note that
2(y)so = (¥*)oo = (d(x))oo = deg(d) - (x)oo = 3(X)oo-

That implies that all the coefficients in (x) are even. Thus, it must be that
(X)oo = 2p for some p € PP of degree 1. O
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Conversely, we have

Let K be a field with char(K) # 2, and let F /K be a function field of genus
g = 1 that has a prime divisor p of degree 1. Then F = K(x, y) where

y? = d(x) for a square-free d € K[X] of degree 3, and (x)s = 2p.

For each n € N, deg(np) = ndegp = n. Therefore, if n > 2g — 2 = 0 then by
Riemann-Roch,
dim L(np) =dimnp=n+1—g=n.

Furthermore,

K = L(p) C L(2p) C --- C L(np).
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Proof cont.
In particular, there exist x, y € F such that

L(2p) = Spany{1,x} and L(3p) = Span,{1,x,y}.
Since x € L(2p) \ L(p) we must have (x)oo = 2p. Similarly, y € £(3p) \ L(2p)
implies that (y)eo = 3p. Then for i,j € N we have
(X'y)oo = (20 + 3))p.
It is easy to verify that
L(p) = Spank {1} L(2p) = Spank{1,x}
£(3p) = SpanK{]-?X;y} ‘C(4p) = SpanK{1>X7y7X2}

‘C(5p) = SpanK{l,x,y,xz,Xy} ‘C(6p) = SpanK{laX7y7X27Xan37y2}




Proof cont.
Thus, there is a linear combination (with f # 0)

y? =a+ bx +cy + dx® + exy + fx°, (1)

y> —(ex+c)y = a+ bx + dx® + A°. (2)

Now, as char(K) # 2 we can complete the square to get
1 ’ 2 3 1 2
y—a(ex%—c) =a+ bx + dx” + fx +Z(ex+c). (3)

Now letting y’ = y — 2(ex + ¢) gives y”> = d(x) for d € K[X] of degree 3.

Clearly, K(x,y) = K(x,y’). Thus it remains to show that F = K(x, y) and that
d is square-free.
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Proof cont.

Indeed, we saw that deg(x)o = 2 and deg(y)-o = 3 are coprime, so by Question
2 in PS 3 we obtain F = K(x,y).

Finally, assume to the contrary that d is not square-free. By (3), it has degree 3
and leading coefficient f, so it must be of the form

d(X)=f-(X —a)*(X - §).
But then for z := % € F we get z2 = ﬁ = f - (x — (). But then
F=K(x,y')=K(x,z) = K(2)

so F is a rational function field, contradicting g = 1.

[

Tomer Manket Elliptic Function Fields



Elliptic Function Fields

Definition 3 (Elliptic function field)

A function field F/K is an elliptic function field if
Q the genus of F/K is g =1, and
@ there exists a divisor a with dega = 1.

If dega =1 then dega > 2g — 2 =0, so by Riemann-Roch
dima=dega+1—g=1.

Taking 0 # x € L(a) we obtain q == a+ (x) > 0. Asq >0 anddegq =1, we
get that q must be a prime divisor.
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Elliptic Function Fields

Corollary 4
Let F/K be an elliptic function field with char(K) # 2. Then there exist
© a prime divisor q with degq = 1,
@ a square-free polynomial d € K[X] with degd = 3, and
© elements x,y € F/K
such that
Q@ F = K(x,y) and y?> = d(x),
Q@ (X)oo =29 and (¥)so = 39.

What are the rational (i.e. degree one) prime divisors of F/K?
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Degree one prime divisors of F = K(x, y)

Recall that a degree one prime divisor of F/K must lie above a degree one prime
divisor of K(x)/K, i.e. above po, or py_, for some a € K.

By the fundamental equality, we know that for every p € P}((X),

> e(B/p) - F(B/p) = [F : K(x)] =2

B/p
So there are 3 possible cases:
B B P1 B2
e=2 or e=1 or
f=1‘ f:2‘ e:f& e=f=1
p p p
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Degree one prime divisors of F = K(x, y)

@ For p = poo: if P lies above p then vp(x) < 0. Recall that (x)F o = 29
(and q has degree one) so we have

q
e=2
f=1

Poo
i.e. there is a unique prime divisor in F above p.,, and it has degree one.
o For p = py_, (where a € K):
Case 1. d(a) = b? for some b € K*.
The minimal polynomial of y over K(x) is p(T) = T2 — d(x) € K(x)[T]
and

0.(T):=T?—d(a)=T?—b>=(T +b)(T — b).



Degree one prime divisors of F = K(x, y)

0.(T):=T?—d(a)=T?—b>=(T +b)(T — b).

RUI B2
Thus by Kummer Theorem, in this case we have \ /
e=f=1 e=f=1

pra
i.e. there are two degree one prime divisors above p in F, with corresponding
places o, , o, such that

P, (x) = o, (x) = a,
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Degree one prime divisors of F = K(x, y)

Case 2. d(a) # b? for all b € K.
Then ,(T) := T? — d(a) is irreducible over K, so by Kummer Theorem

B
e=1
f=2

Px—a
i.e. there is a unique prime divisor in F lying above p, but it has degree 2.
Case 3. d(a) = 0.

In this case ©,(T) = T2 is not a product of distinct irreducible polynomials, so
we cannot use Kummer's Theorem.
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Degree one prime divisors of F = K(x, y)

Still, we can use the theorem about Kummer extensions (with n = 2) to get that
if 3 lies above p, then

e(P/p) = rﬁ where r, = ged(n, 14,(d(x))).

p

Since d(x) is square-free and d(a) = 0, we have (x — a) | d(x) but
(x — a)? 1 d(x), hence

vp(d(x)) = v, (d(x)) =1 = ry, = ged(n, 1) =1

and so e(P/p) = 2 =2.
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Degree one prime divisors of F = K(x, y)

It follows that there is a unique prime divisor P in F lying above p, and it has
degree one.

Moreover, x — a € m, so X — a € mgy, i.e. pp(x) = a.

In addition,

2up(y) = vp(y?) = vp(d(x)) = e(B/p) - p(d(x)) =21 =2
so vy(y) = 1 > 0 and therefore pg(y) = 0.



Degree one prime divisors of F = K(x, y)

Thus, if we denote
o Pi(K) = {p € Pr[degp =1}

o Py(K) =Pi(K)\ {a}
o &(K)={(a,b) € K x K| b? = d(a)}

we get that there is a bijection
Pi(K) = £'(K)
which is given by

p = (pp(x), 0p(y))
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Now, let £(K) := &'(K) U {O}.
Then we can extend the bijection to P1(K) — £(K) by mapping q +— O.

The set £(K) is called an elliptic curve, with O “the point at infinity".
Such curves have a special structure - their points form an abelian group with
respect to a certain geometric action.

Our goal is to derive the group action from the corresponding elliptic function

field.
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Recall that the divisors group Div(F) has a subgroup
Prin(F) :={(x) | x € F*}.
The divisors class group is the quotient group
C(F) := Div(F)/Prin(F).
We denote the class of a by [a], so [a1] = [az] iff
a1 = ap + (z) for some z € F*.

Recall that in this case deg a; = degay and dima; = dim a,.
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Let Pp1,P2 € ]P)l(K) Then []31] = [pQ] <~ Pp1 = Po.

The direction (<=) is trivial. Conversely, suppose [p1] = [p2]. Then

p2 = p1 + (2) for some z € F*. In particular, p; + (z) > 0 and so z € L(p1).
As p1 > 0, we have K = £(0) C L(p1). In addition, by Riemann-Roch,

dimp; =degp1 +1—g =1. Thus L(p1) = K and so z € K*. It follows that
(z) =0 and p2 = p1. O

v

Finally, consider the following subgroup of C(F):

Co := {a € Div(F) | dega = 0} /Prin(F).
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Group structure on Py(K)

The mapping ®: P1(K) — Co given by
pr=p—ad

is a bijection.

First, note that p € P1(K) = deg(p — q) =degp —degg=1—-1=0.
One to one: Suppose [p — q] = [p’ — q]. Then there exists z € F* s.t.
p—q=p"—q+(2). Hence p =p’' + (2), so [p] = [p] and by the previous
claim p =p’.
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Group structure on Py(K)

Onto: Let [a] € Cp. Then deg(a + q) = 1, so again by Riemann-Roch,

dim(a + q) = 1. Hence there exists 0 # z € L(a + q), i.e. z € F* s.t.
(z)+a+q>0. Asdeg((z) + a+q) =1, it must be that (z) + a+ q = p for
some p € P1(K). Therefore p —q = a+ (z), and [a] = [p — q] = (p).

The bijection ®: P1(K) — Cp can be used to carry over the group structure of
Co to the set P1(K) as follows:

Definition 5

For p1,p2 € Pl(K), define

p1 B po == O H(D(p1) + D(p2)).




.
Claim 5.1

(P1(K), ®) is an abelian group with q the zero element.
For p1,p2, b3 € P1(K),

p1@p2 =p3 <= [p1+p2] = [p3+q]

pL@pr =p3 < O H(P(p1) + P(p2)) = p3 —
O(p1) + P(p2) = P(p3) <= [p1—a]l+[p2—ql=[p3—q] =
[p1—a+p2—q]=[ps—aq] < [p1+p2] =[p3+4d]

U

v
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Group structure on £(K)

Recall that we also have a bijection P1(K) — £(K) (with g — O), which can be
used to get a group structure on £(K), with O the zero element.

We want to understand this action - what is (a, b) ® (c,d)?

Key observation: Let (a, b) € £'(K) be a point with corresponding p € P1(K)
(i.e. gp(x) = a, ¢p(y) = b). Let £ be the line aX + BY + v = 0 (where
a, 8,7 € K, and a # 0 or 5 # 0). Consider the function

z:=ax+ Py+~ve€F.
Then (a, b) € ¢ iff

aa+fb+7=0 <= apy(x)+ Bep(y) +7=0 —
ep(ax+ By +7) =0 <= pp(2) =0 <= 1p(2) >0 < p < (2)o.
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Let us consider two particular cases.

Case 1: Suppose (a, b) € £'(K) and b # 0. Clearly, (a, —b) € £'(K) as well.
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Let p1,p2 € Pi(K) be the prime divisors corresponding to (a, b) and (a, —b),
respectively. We need to show that p; @ pp = q, i.e. [p1 + p2] = [q + q].
Both (a, b) and (a, —b) lie on the line X — a = 0, so by the observation the
function z = x — a € F* satisfies (z)o > p1 + po.

Since (X)oo = 29 we have that (z)oo = (X — @)oo = 2q. Therefore

deg(z)p = deg(z)s = 2 and (z)o = p1 + p2. Overall,

(2) =(2)0 — (2)oc =P1+P2—29 = p1+p2 =29+ (2)

so [p1 + p2] = [2q] as desired. O

In fact, the claim holds also when b = 0. In this case, p; = p» lies above p,_, in
K(x), and (z)o = 2p1. Indeed, as we saw,

vp(x —a) = e(p1/px—s) - va(x —a) =2-1=2.



Case 2: Suppose (a, b), (c,d) € £'(K) and that the line passing through them
intersects £'(K) in a third (other) point (e, f) (in particular, a # c).

P, j
| P3
P |
| X
\_//\PX

(a,b) ® (c,d) = —(e,f) = (e, —f)
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Let p1, p2, p3 € Pi(K) be the (distinct) prime divisors corresponding to
(a, b),(c,d), (e, f) respectively. Since a # c, the line passing through (a, b) and
(c,d) is of the form aX + BY +~v = 0 with 3 # 0.

e
-

Consider the function z = ax + Sy + v € F*. Note that by the observation,
(2)o > p1+p2+p3. As for (z)o, we have (by the strict triangle inequality) that
(2)oo = 3q. Hence deg(z)o = deg(z)oo = 3 and (2)o = p1 + P2 + P3.

v
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Now, let ps € P}(K) be the prime divisor corresponding to —(e, f) = (e, —f).
We saw that (z) = (2)o — (2)oc = P1 + P2 + p3 — 3q. Adding ps to both sides,
we get

(2) +pa=p1+Pp2+p3+ps— 3q. (4)

By the proof of the previous claim, we know that p3 + ps = 2q + (w) where
w = x — e € F*. Substituting this in Equation (4), we obtain

(2) +pa = p1+p2+ 29 + (w) — 3q.
Since (z) — (w) = (£), this gives

pr+p=ps+qg+(z/w),

i.e. [p1 + p2] = [pa + q] which means p; @ pa = pa, as desired. O




