Elliptic Function Fields

Recitation 12

Tomer Manket

Tel Aviv University

Lemma 1

Let F/K be a function field of genus g = 1. Suppose F = K(x, y) where $y^2 = d(x)$ for $d \in K[X]$ of degree 3. Then there exists a prime divisor \mathfrak{p} of degree 1 such that $(x)_{\infty} = 2\mathfrak{p}$.

Proof.

First,

$$\deg(x)_{\infty} = [F : K(x)] = [K(x)(y) : K(x)] \leq 2.$$

If [F : K(x)] = 1 then F = K(x) is a rational function field and so g = 0, a contradiction. Hence $deg(x)_{\infty} = 2$.

As deg $(x)_{\infty} = 2$ and $(x)_{\infty} \ge 0$, there are 3 possibilities:

However, note that

$$2(y)_{\infty} = (y^2)_{\infty} = (d(x))_{\infty} = \deg(d) \cdot (x)_{\infty} = 3(x)_{\infty}.$$

That implies that all the coefficients in $(x)_{\infty}$ are even. Thus, it must be that $(x)_{\infty} = 2\mathfrak{p}$ for some $\mathfrak{p} \in \mathbb{P}$ of degree 1.

Conversely, we have

Theorem 2

Let K be a field with char(K) $\neq 2$, and let F/K be a function field of genus g = 1 that has a prime divisor \mathfrak{p} of degree 1. Then F = K(x, y) where $y^2 = d(x)$ for a square-free $d \in K[X]$ of degree 3, and $(x)_{\infty} = 2\mathfrak{p}$.

Proof.

For each $n \in \mathbb{N}$, deg $(n\mathfrak{p}) = n \deg \mathfrak{p} = n$. Therefore, if n > 2g - 2 = 0 then by Riemann-Roch,

$$\dim \mathcal{L}(n\mathfrak{p}) = \dim n\mathfrak{p} = n+1-g = n.$$

Furthermore,

$$\mathcal{K} = \mathcal{L}(\mathfrak{p}) \subset \mathcal{L}(2\mathfrak{p}) \subset \cdots \subset \mathcal{L}(n\mathfrak{p}).$$

In particular, there exist $x, y \in F$ such that

$$\mathcal{L}(2\mathfrak{p})={\sf Span}_{\mathcal{K}}\{1,x\}$$
 and $\mathcal{L}(3\mathfrak{p})={\sf Span}_{\mathcal{K}}\{1,x,y\}.$

Since $x \in \mathcal{L}(2\mathfrak{p}) \setminus \mathcal{L}(\mathfrak{p})$ we must have $(x)_{\infty} = 2\mathfrak{p}$. Similarly, $y \in \mathcal{L}(3\mathfrak{p}) \setminus \mathcal{L}(2\mathfrak{p})$ implies that $(y)_{\infty} = 3\mathfrak{p}$. Then for $i, j \in \mathbb{N}$ we have

$$(x^iy^j)_{\infty}=(2i+3j)\mathfrak{p}$$

It is easy to verify that

$$\begin{aligned} \mathcal{L}(\mathfrak{p}) &= \operatorname{Span}_{K}\{1\} \quad \mathcal{L}(2\mathfrak{p}) = \operatorname{Span}_{K}\{1, x\} \\ \mathcal{L}(3\mathfrak{p}) &= \operatorname{Span}_{K}\{1, x, y\} \quad \mathcal{L}(4\mathfrak{p}) = \operatorname{Span}_{K}\{1, x, y, x^{2}\} \\ \mathcal{L}(5\mathfrak{p}) &= \operatorname{Span}_{K}\{1, x, y, x^{2}, xy\} \quad \mathcal{L}(6\mathfrak{p}) = \operatorname{Span}_{K}\{1, x, y, x^{2}, xy, x^{3}, y^{2}\} \end{aligned}$$

Thus, there is a linear combination (with $f \neq 0$)

$$y^2 = a + bx + cy + dx^2 + exy + fx^3,$$
 (1)

i.e.

$$y^{2} - (ex + c)y = a + bx + dx^{2} + fx^{3}.$$
 (2)

Now, as $char(K) \neq 2$ we can complete the square to get

$$\left(y-\frac{1}{2}(ex+c)\right)^2 = a+bx+dx^2+fx^3+\frac{1}{4}(ex+c)^2.$$
 (3)

Now letting $y' = y - \frac{1}{2}(ex + c)$ gives $y'^2 = d(x)$ for $d \in K[X]$ of degree 3. Clearly, K(x, y) = K(x, y'). Thus it remains to show that F = K(x, y) and that

d is square-free.

Indeed, we saw that $\deg(x)_{\infty} = 2$ and $\deg(y)_{\infty} = 3$ are coprime, so by Question 2 in PS 3 we obtain F = K(x, y).

Finally, assume to the contrary that d is not square-free. By (3), it has degree 3 and leading coefficient f, so it must be of the form

$$d(X) = f \cdot (X - \alpha)^2 (X - \beta).$$

But then for $z := \frac{y'}{x-\alpha} \in F$ we get $z^2 = \frac{{y'}^2}{(x-\alpha)^2} = f \cdot (x-\beta)$. But then

$$F = K(x, y') = K(x, z) = K(z)$$

so F is a rational function field, contradicting g = 1.

Definition 3 (Elliptic function field)

A function field F/K is an *elliptic function field* if

• the genus of
$$F/K$$
 is $g = 1$, and

2 there exists a divisor \mathfrak{a} with deg $\mathfrak{a} = 1$.

Remark 1

If deg
$$\mathfrak{a} = 1$$
 then deg $\mathfrak{a} > 2g - 2 = 0$, so by Riemann-Roch

$$\dim \mathfrak{a} = \deg \mathfrak{a} + 1 - g = 1.$$

Taking $0 \neq x \in \mathcal{L}(\mathfrak{a})$ we obtain $\mathfrak{q} := \mathfrak{a} + (x) \ge 0$. As $\mathfrak{q} \ge 0$ and $\deg \mathfrak{q} = 1$, we get that \mathfrak{q} must be a prime divisor.

Corollary 4

Let F/K be an elliptic function field with char $(K) \neq 2$. Then there exist

- **1** a prime divisor q with deg q = 1,
- **2** a square-free polynomial $d \in K[X]$ with deg d = 3, and
- **i** elements $x, y \in F/K$

such that

•
$$F = K(x, y)$$
 and $y^2 = d(x)$,
• $(x)_{\infty} = 2q$ and $(y)_{\infty} = 3q$.

What are the rational (i.e. degree one) prime divisors of F/K?

Recall that a degree one prime divisor of F/K must lie above a degree one prime divisor of K(x)/K, i.e. above \mathfrak{p}_{∞} or \mathfrak{p}_{x-a} for some $a \in K$.

By the fundamental equality, we know that for every $\mathfrak{p}\in\mathbb{P}^1_{\mathcal{K}(\mathsf{x})}$,

$$\sum_{\mathfrak{P}/\mathfrak{p}} e(\mathfrak{P}/\mathfrak{p}) \cdot f(\mathfrak{P}/\mathfrak{p}) = [F : K(x)] = 2$$

So there are 3 possible cases:

Degree one prime divisors of F = K(x, y)

• For $\mathfrak{p} = \mathfrak{p}_{\infty}$: if \mathfrak{P} lies above \mathfrak{p} then $\nu_{\mathfrak{P}}(x) < 0$. Recall that $(x)_{F,\infty} = 2\mathfrak{q}$ (and \mathfrak{q} has degree one) so we have

$$\begin{array}{c} \mathfrak{q} \\ e=2 \\ f=1 \\ \mathfrak{p}_{\infty} \end{array}$$

i.e. there is a unique prime divisor in F above \mathfrak{p}_∞ , and it has degree one.

For p = p_{x-a} (where a ∈ K):
Case 1. d(a) = b² for some b ∈ K[×].
The minimal polynomial of y over K(x) is φ(T) = T² − d(x) ∈ K(x)[T] and

$$\varphi_a(T) := T^2 - d(a) = T^2 - b^2 = (T + b)(T - b)$$

$$\varphi_a(T) := T^2 - d(a) = T^2 - b^2 = (T + b)(T - b).$$

 \mathfrak{P}_1

e=f=1

 \mathfrak{P}_2

e=f=1

 \mathfrak{p}_{x-a}

Thus by Kummer Theorem, in this case we have

i.e. there are two degree one prime divisors above \mathfrak{p} in F, with corresponding places $\varphi_{\mathfrak{P}_1}, \varphi_{\mathfrak{P}_2}$ such that

$$arphi_{\mathfrak{P}_1}(x) = arphi_{\mathfrak{P}_2}(x) = a,$$
 $arphi_{\mathfrak{P}_1}(y) = -b \quad and \quad arphi_{\mathfrak{P}_2}(y) = b.$

Degree one prime divisors of F = K(x, y)

Case 2. $d(a) \neq b^2$ for all $b \in K$.

Then $\varphi_a(T) := T^2 - d(a)$ is irreducible over K, so by Kummer Theorem

$$\left. egin{smallmatrix} \mathfrak{P} & & \ \mathfrak{p}_{x-a} \end{bmatrix}
ight.$$

i.e. there is a unique prime divisor in F lying above \mathfrak{p} , but it has degree 2.

Case 3. d(a) = 0.

In this case $\varphi_a(T) = T^2$ is not a product of distinct irreducible polynomials, so we cannot use Kummer's Theorem.

Still, we can use the theorem about Kummer extensions (with n = 2) to get that if \mathfrak{P} lies above \mathfrak{p} , then

$$e(\mathfrak{P}/\mathfrak{p})=rac{n}{r_p} ext{ where } r_p=\gcd(n,
u_\mathfrak{p}(d(x))).$$

Since d(x) is square-free and d(a) = 0, we have $(x - a) \mid d(x)$ but $(x - a)^2 \nmid d(x)$, hence

$$u_{\mathfrak{p}}(d(x)) =
u_{\mathfrak{p}_{x-a}}(d(x)) = 1 \implies r_{\mathfrak{p}} = \gcd(n, 1) = 1$$

and so $e(\mathfrak{P}/\mathfrak{p}) = \frac{2}{1} = 2$.

Degree one prime divisors of F = K(x, y)

It follows that there is a unique prime divisor \mathfrak{P} in F lying above \mathfrak{p} , and it has degree one.

$$\begin{array}{c} \mathfrak{P} \\ \mathfrak{P}_{x=2} \\ \mathfrak{P}_{x=1} \\ \mathfrak{P}_{x=a} \end{array}$$

Moreover, $x - a \in \mathfrak{m}_p$ so $x - a \in \mathfrak{m}_p$, i.e. $\varphi_p(x) = a$. In addition.

$$2\nu_{\mathfrak{P}}(y) = \nu_{\mathfrak{P}}(y^2) = \nu_{\mathfrak{P}}(d(x)) = e(\mathfrak{P}/\mathfrak{p}) \cdot \nu_{\mathfrak{p}}(d(x)) = 2 \cdot 1 = 2$$

so $u_{\mathfrak{P}}(y) = 1 > 0$ and therefore $\varphi_{\mathfrak{P}}(y) = 0$.

Degree one prime divisors of F = K(x, y)

Thus, if we denote

•
$$\mathbb{P}_1(K) = \{\mathfrak{p} \in \mathbb{P}_F \mid \deg \mathfrak{p} = 1\}$$

• $\mathbb{P}'_1(K) = \mathbb{P}_1(K) \setminus \{\mathfrak{q}\}$
• $\mathcal{E}'(K) = \{(a, b) \in K \times K \mid b^2 = d(a)\}$

we get that there is a bijection

$$\mathbb{P}_1'(K)\cong \mathcal{E}'(K)$$

which is given by

$$\mathfrak{p}\mapsto (\varphi_\mathfrak{p}(x),\varphi_\mathfrak{p}(y))$$

Now, let $\mathcal{E}(K) := \mathcal{E}'(K) \cup \{O\}.$

Then we can extend the bijection to $\mathbb{P}_1(K) \to \mathcal{E}(K)$ by mapping $\mathfrak{q} \mapsto O$.

The set $\mathcal{E}(K)$ is called an elliptic curve, with O "the point at infinity". Such curves have a special structure - their points form an abelian group with respect to a certain geometric action.

Our goal is to derive the group action from the corresponding elliptic function field.

Recall that the divisors group Div(F) has a subgroup

 $\mathsf{Prin}(F) := \{(x) \mid x \in F^{\times}\}.$

The divisors class group is the quotient group

 $\mathcal{C}(F) := \operatorname{Div}(F)/\operatorname{Prin}(F).$

We denote the class of $\mathfrak a$ by $[\mathfrak a],$ so $[\mathfrak a_1]=[\mathfrak a_2]$ iff

$$\mathfrak{a}_1 = \mathfrak{a}_2 + (z)$$
 for some $z \in F^{\times}$.

Recall that in this case deg $a_1 = \text{deg } a_2$ and dim $a_1 = \text{dim } a_2$.

Claim 4.1

Let
$$\mathfrak{p}_1, \mathfrak{p}_2 \in \mathbb{P}_1(K)$$
. Then $[\mathfrak{p}_1] = [\mathfrak{p}_2] \iff \mathfrak{p}_1 = \mathfrak{p}_2$.

Proof.

The direction (\Leftarrow) is trivial. Conversely, suppose $[\mathfrak{p}_1] = [\mathfrak{p}_2]$. Then $\mathfrak{p}_2 = \mathfrak{p}_1 + (z)$ for some $z \in F^{\times}$. In particular, $\mathfrak{p}_1 + (z) \ge 0$ and so $z \in \mathcal{L}(\mathfrak{p}_1)$. As $\mathfrak{p}_1 \ge 0$, we have $K = \mathcal{L}(0) \subseteq \mathcal{L}(\mathfrak{p}_1)$. In addition, by Riemann-Roch, dim $\mathfrak{p}_1 = \deg \mathfrak{p}_1 + 1 - g = 1$. Thus $\mathcal{L}(\mathfrak{p}_1) = K$ and so $z \in K^{\times}$. It follows that (z) = 0 and $\mathfrak{p}_2 = \mathfrak{p}_1$.

Finally, consider the following subgroup of C(F):

$$\mathcal{C}_0 := \{\mathfrak{a} \in \mathsf{Div}(F) \mid \mathsf{deg}\, \mathfrak{a} = 0\}/\mathsf{Prin}(F).$$

Group structure on $\mathbb{P}_1(K)$

Claim 4.2

The mapping
$$\Phi \colon \mathbb{P}_1(K) \to \mathcal{C}_0$$
 given by

$$\mathfrak{p}\mapsto [\mathfrak{p}-\mathfrak{q}]$$

is a bijection.

Proof.

First, note that $\mathfrak{p} \in \mathbb{P}_1(K) \implies \deg(\mathfrak{p} - \mathfrak{q}) = \deg \mathfrak{p} - \deg \mathfrak{q} = 1 - 1 = 0$. One to one: Suppose $[\mathfrak{p} - \mathfrak{q}] = [\mathfrak{p}' - \mathfrak{q}]$. Then there exists $z \in F^{\times}$ s.t. $\mathfrak{p} - \mathfrak{q} = \mathfrak{p}' - \mathfrak{q} + (z)$. Hence $\mathfrak{p} = \mathfrak{p}' + (z)$, so $[\mathfrak{p}] = [\mathfrak{p}']$ and by the previous claim $\mathfrak{p} = \mathfrak{p}'$.

Proof.

Onto: Let $[\mathfrak{a}] \in \mathcal{C}_0$. Then deg $(\mathfrak{a} + \mathfrak{q}) = 1$, so again by Riemann-Roch, dim $(\mathfrak{a} + \mathfrak{q}) = 1$. Hence there exists $0 \neq z \in \mathcal{L}(\mathfrak{a} + \mathfrak{q})$, i.e. $z \in F^{\times}$ s.t. $(z) + \mathfrak{a} + \mathfrak{q} \ge 0$. As deg $((z) + \mathfrak{a} + \mathfrak{q}) = 1$, it must be that $(z) + \mathfrak{a} + \mathfrak{q} = \mathfrak{p}$ for some $\mathfrak{p} \in \mathbb{P}_1(K)$. Therefore $\mathfrak{p} - \mathfrak{q} = \mathfrak{a} + (z)$, and $[\mathfrak{a}] = [\mathfrak{p} - \mathfrak{q}] = \Phi(\mathfrak{p})$.

The bijection $\Phi \colon \mathbb{P}_1(K) \to \mathcal{C}_0$ can be used to carry over the group structure of \mathcal{C}_0 to the set $\mathbb{P}_1(K)$ as follows:

Definition 5

For $\mathfrak{p}_1, \mathfrak{p}_2 \in \mathbb{P}_1(K)$, define

$$\mathfrak{p}_1\oplus\mathfrak{p}_2:=\Phi^{-1}(\Phi(\mathfrak{p}_1)+\Phi(\mathfrak{p}_2)).$$

Claim 5.1

 $(\mathbb{P}_1(K), \oplus)$ is an abelian group with q the zero element. For $\mathfrak{p}_1, \mathfrak{p}_2, \mathfrak{p}_3 \in \mathbb{P}_1(K)$,

$$\mathfrak{p}_1 \oplus \mathfrak{p}_2 = \mathfrak{p}_3 \iff [\mathfrak{p}_1 + \mathfrak{p}_2] = [\mathfrak{p}_3 + \mathfrak{q}]$$

Proof.

$$\mathfrak{p}_1 \oplus \mathfrak{p}_2 = \mathfrak{p}_3 \iff \Phi^{-1}(\Phi(\mathfrak{p}_1) + \Phi(\mathfrak{p}_2)) = \mathfrak{p}_3 \iff \Phi(\mathfrak{p}_1) + \Phi(\mathfrak{p}_2) = \Phi(\mathfrak{p}_3) \iff [\mathfrak{p}_1 - \mathfrak{q}] + [\mathfrak{p}_2 - \mathfrak{q}] = [\mathfrak{p}_3 - \mathfrak{q}] \iff [\mathfrak{p}_1 - \mathfrak{q} + \mathfrak{p}_2 - \mathfrak{q}] = [\mathfrak{p}_3 - \mathfrak{q}] \iff [\mathfrak{p}_1 + \mathfrak{p}_2] = [\mathfrak{p}_3 + \mathfrak{q}]$$

Group structure on $\mathcal{E}(K)$

Recall that we also have a bijection $\mathbb{P}_1(K) \to \mathcal{E}(K)$ (with $\mathfrak{q} \mapsto O$), which can be used to get a group structure on $\mathcal{E}(K)$, with O the zero element.

We want to understand this action - what is $(a, b) \oplus (c, d)$?

Key observation: Let $(a, b) \in \mathcal{E}'(K)$ be a point with corresponding $\mathfrak{p} \in \mathbb{P}_1(K)$ (i.e. $\varphi_{\mathfrak{p}}(x) = a$, $\varphi_{\mathfrak{p}}(y) = b$). Let ℓ be the line $\alpha X + \beta Y + \gamma = 0$ (where $\alpha, \beta, \gamma \in K$, and $\alpha \neq 0$ or $\beta \neq 0$). Consider the function

$$z := \alpha x + \beta y + \gamma \in F.$$

Then $(a, b) \in \ell$ iff

$$\begin{aligned} \alpha \boldsymbol{a} + \beta \boldsymbol{b} + \gamma &= 0 \iff \alpha \varphi_{\mathfrak{p}}(\boldsymbol{x}) + \beta \varphi_{\mathfrak{p}}(\boldsymbol{y}) + \gamma &= 0 \iff \\ \varphi_{\mathfrak{p}}(\alpha \boldsymbol{x} + \beta \boldsymbol{y} + \gamma) &= 0 \iff \varphi_{\mathfrak{p}}(\boldsymbol{z}) = 0 \iff \nu_{\mathfrak{p}}(\boldsymbol{z}) > 0 \iff \mathfrak{p} \leq (\boldsymbol{z})_{0}. \end{aligned}$$

Let us consider two particular cases.

<u>Case 1</u>: Suppose $(a, b) \in \mathcal{E}'(K)$ and $b \neq 0$. Clearly, $(a, -b) \in \mathcal{E}'(K)$ as well.

Claim 5.3

$$(a,b) \oplus (a,-b) = O$$
, i.e. $(a,-b) = -(a,b)$.

Proof.

Let $\mathfrak{p}_1, \mathfrak{p}_2 \in \mathbb{P}'_1(K)$ be the prime divisors corresponding to (a, b) and (a, -b). respectively. We need to show that $\mathfrak{p}_1 \oplus \mathfrak{p}_2 = \mathfrak{q}$, i.e. $[\mathfrak{p}_1 + \mathfrak{p}_2] = [\mathfrak{q} + \mathfrak{q}]$. Both (a, b) and (a, -b) lie on the line X - a = 0, so by the observation the function $z = x - a \in F^{\times}$ satisfies $(z)_0 > \mathfrak{p}_1 + \mathfrak{p}_2$. Since $(x)_{\infty} = 2\mathfrak{q}$ we have that $(z)_{\infty} = (x - a)_{\infty} = 2\mathfrak{q}$. Therefore $\deg(z)_0 = \deg(z)_\infty = 2$ and $(z)_0 = \mathfrak{p}_1 + \mathfrak{p}_2$. Overall, $(z) = (z)_0 - (z)_\infty = \mathfrak{p}_1 + \mathfrak{p}_2 - 2\mathfrak{q} \implies \mathfrak{p}_1 + \mathfrak{p}_2 = 2\mathfrak{q} + (z)$ so $[\mathfrak{p}_1 + \mathfrak{p}_2] = [2\mathfrak{q}]$ as desired.

In fact, the claim holds also when b = 0. In this case, $\mathfrak{p}_1 = \mathfrak{p}_2$ lies above \mathfrak{p}_{x-a} in $\mathcal{K}(x)$, and $(z)_0 = 2\mathfrak{p}_1$. Indeed, as we saw,

$$u_{\mathfrak{P}}(x-a) = e(\mathfrak{p}_1/\mathfrak{p}_{x-a}) \cdot \nu_a(x-a) = 2 \cdot 1 = 2.$$

<u>Case 2</u>: Suppose $(a, b), (c, d) \in \mathcal{E}'(K)$ and that the line passing through them intersects $\mathcal{E}'(K)$ in a third (other) point (e, f) (in particular, $a \neq c$).

Claim 5.4

$$(a,b)\oplus(c,d)=-(e,f)=(e,-f)$$

Proof.

Let $\mathfrak{p}_1, \mathfrak{p}_2, \mathfrak{p}_3 \in \mathbb{P}'_1(K)$ be the (distinct) prime divisors corresponding to (a, b), (c, d), (e, f) respectively. Since $a \neq c$, the line passing through (a, b) and (c, d) is of the form $\alpha X + \beta Y + \gamma = 0$ with $\beta \neq 0$.

Consider the function $z = \alpha x + \beta y + \gamma \in F^{\times}$. Note that by the observation, $(z)_0 \ge \mathfrak{p}_1 + \mathfrak{p}_2 + \mathfrak{p}_3$. As for $(z)_{\infty}$, we have (by the strict triangle inequality) that $(z)_{\infty} = 3\mathfrak{q}$. Hence $\deg(z)_0 = \deg(z)_{\infty} = 3$ and $(z)_0 = \mathfrak{p}_1 + \mathfrak{p}_2 + \mathfrak{p}_3$.

Proof.

Now, let $\mathfrak{p}_4 \in \mathbb{P}'_1(K)$ be the prime divisor corresponding to -(e, f) = (e, -f). We saw that $(z) = (z)_0 - (z)_\infty = \mathfrak{p}_1 + \mathfrak{p}_2 + \mathfrak{p}_3 - 3\mathfrak{q}$. Adding \mathfrak{p}_4 to both sides, we get

$$(z) + \mathfrak{p}_4 = \mathfrak{p}_1 + \mathfrak{p}_2 + \mathfrak{p}_3 + \mathfrak{p}_4 - 3\mathfrak{q}.$$
(4)

By the proof of the previous claim, we know that $\mathfrak{p}_3 + \mathfrak{p}_4 = 2\mathfrak{q} + (w)$ where $w = x - e \in F^{\times}$. Substituting this in Equation (4), we obtain

$$(z) + \mathfrak{p}_4 = \mathfrak{p}_1 + \mathfrak{p}_2 + 2\mathfrak{q} + (w) - 3\mathfrak{q}.$$

Since $(z) - (w) = \left(\frac{z}{w}\right)$, this gives

$$\mathfrak{p}_1+\mathfrak{p}_2=\mathfrak{p}_4+\mathfrak{q}+(z/w)\,,$$

i.e. $[\mathfrak{p}_1 + \mathfrak{p}_2] = [\mathfrak{p}_4 + \mathfrak{q}]$ which means $\mathfrak{p}_1 \oplus \mathfrak{p}_2 = \mathfrak{p}_4$, as desired.