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Function fields of genus 1

Lemma 1
Let F/K be a function field of genus g = 1. Suppose F = K (x , y) where
y2 = d(x) for d ∈ K [X ] of degree 3. Then there exists a prime divisor p of
degree 1 such that (x)∞ = 2p.

Proof.
First,

deg(x)∞ = [F : K (x)] = [K (x)(y) : K (x)] ≤ 2.

If [F : K (x)] = 1 then F = K (x) is a rational function field and so g = 0, a
contradiction. Hence deg(x)∞ = 2.
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Proof cont.
As deg(x)∞ = 2 and (x)∞ ≥ 0, there are 3 possibilities:

(x)∞ = p for some p ∈ P of deg p = 2.
(x)∞ = 2p for some p ∈ P of deg p = 1.
(x)∞ = p+ q for some p, q ∈ P with deg p = deg q = 1.

However, note that

2(y)∞ = (y2)∞ = (d(x))∞ = deg(d) · (x)∞ = 3(x)∞.

That implies that all the coefficients in (x)∞ are even. Thus, it must be that
(x)∞ = 2p for some p ∈ P of degree 1.
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Conversely, we have

Theorem 2
Let K be a field with char(K ) ̸= 2, and let F/K be a function field of genus
g = 1 that has a prime divisor p of degree 1. Then F = K (x , y) where
y2 = d(x) for a square-free d ∈ K [X ] of degree 3, and (x)∞ = 2p.

Proof.
For each n ∈ N, deg(np) = n deg p = n. Therefore, if n > 2g − 2 = 0 then by
Riemann-Roch,

dimL(np) = dim np = n + 1 − g = n.

Furthermore,
K = L(p) ⊂ L(2p) ⊂ · · · ⊂ L(np).
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Proof cont.
In particular, there exist x , y ∈ F such that

L(2p) = SpanK{1, x} and L(3p) = SpanK{1, x , y}.

Since x ∈ L(2p) \ L(p) we must have (x)∞ = 2p. Similarly, y ∈ L(3p) \ L(2p)
implies that (y)∞ = 3p. Then for i , j ∈ N we have

(x iy j)∞ = (2i + 3j)p.

It is easy to verify that

L(p) = SpanK{1} L(2p) = SpanK{1, x}
L(3p) = SpanK{1, x , y} L(4p) = SpanK{1, x , y , x2}

L(5p) = SpanK{1, x , y , x2, xy} L(6p) = SpanK{1, x , y , x2, xy , x3, y2}
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Proof cont.
Thus, there is a linear combination (with f ̸= 0)

y2 = a + bx + cy + dx2 + exy + fx3, (1)

i.e.
y2 − (ex + c)y = a + bx + dx2 + fx3. (2)

Now, as char(K ) ̸= 2 we can complete the square to get(
y − 1

2
(ex + c)

)2

= a + bx + dx2 + fx3 +
1
4
(ex + c)2. (3)

Now letting y ′ = y − 1
2(ex + c) gives y ′2 = d(x) for d ∈ K [X ] of degree 3.

Clearly, K (x , y) = K (x , y ′). Thus it remains to show that F = K (x , y) and that
d is square-free.
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Proof cont.
Indeed, we saw that deg(x)∞ = 2 and deg(y)∞ = 3 are coprime, so by Question
2 in PS 3 we obtain F = K (x , y).

Finally, assume to the contrary that d is not square-free. By (3), it has degree 3
and leading coefficient f , so it must be of the form

d(X ) = f · (X − α)2(X − β).

But then for z := y ′

x−α ∈ F we get z2 = y ′2

(x−α)2 = f · (x − β). But then

F = K (x , y ′) = K (x , z) = K (z)

so F is a rational function field, contradicting g = 1.
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Elliptic Function Fields

Definition 3 (Elliptic function field)

A function field F/K is an elliptic function field if
1 the genus of F/K is g = 1, and
2 there exists a divisor a with deg a = 1.

Remark 1
If deg a = 1 then deg a > 2g − 2 = 0, so by Riemann-Roch

dim a = deg a+ 1 − g = 1.

Taking 0 ̸= x ∈ L(a) we obtain q := a+ (x) ≥ 0. As q ≥ 0 and deg q = 1, we
get that q must be a prime divisor.

Tomer Manket Elliptic Function Fields



Elliptic Function Fields

Corollary 4
Let F/K be an elliptic function field with char(K ) ̸= 2. Then there exist

1 a prime divisor q with deg q = 1,
2 a square-free polynomial d ∈ K [X ] with deg d = 3, and
3 elements x , y ∈ F/K

such that
1 F = K (x , y) and y2 = d(x),
2 (x)∞ = 2q and (y)∞ = 3q.

What are the rational (i.e. degree one) prime divisors of F/K?
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Degree one prime divisors of F = K (x , y)

Recall that a degree one prime divisor of F/K must lie above a degree one prime
divisor of K (x)/K , i.e. above p∞ or px−a for some a ∈ K .

By the fundamental equality, we know that for every p ∈ P1
K(x),∑

P/p

e(P/p) · f (P/p) = [F : K (x)] = 2

So there are 3 possible cases:
P

p

e=2
f=1

or
P

p

e=1
f=2

or
P1 P2

p
e=f=1 e=f=1
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Degree one prime divisors of F = K (x , y)

For p = p∞: if P lies above p then νP(x) < 0. Recall that (x)F ,∞ = 2q
(and q has degree one) so we have

q

p∞

e=2
f=1

i.e. there is a unique prime divisor in F above p∞, and it has degree one.
For p = px−a (where a ∈ K ):

Case 1. d(a) = b2 for some b ∈ K×.

The minimal polynomial of y over K (x) is φ(T ) = T 2 − d(x) ∈ K (x)[T ]
and

φa(T ) := T 2 − d(a) = T 2 − b2 = (T + b)(T − b).
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Degree one prime divisors of F = K (x , y)

φa(T ) := T 2 − d(a) = T 2 − b2 = (T + b)(T − b).

Thus by Kummer Theorem, in this case we have
P1 P2

px−a

e=f=1 e=f=1

i.e. there are two degree one prime divisors above p in F , with corresponding
places φP1, φP2 such that

φP1(x) = φP2(x) = a,

φP1(y) = −b and φP2(y) = b.

Tomer Manket Elliptic Function Fields



Degree one prime divisors of F = K (x , y)

Case 2. d(a) ̸= b2 for all b ∈ K .

Then φa(T ) := T 2 − d(a) is irreducible over K , so by Kummer Theorem

P

px−a

e=1
f=2

i.e. there is a unique prime divisor in F lying above p, but it has degree 2.

Case 3. d(a) = 0.

In this case φa(T ) = T 2 is not a product of distinct irreducible polynomials, so
we cannot use Kummer’s Theorem.
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Degree one prime divisors of F = K (x , y)

Still, we can use the theorem about Kummer extensions (with n = 2) to get that
if P lies above p, then

e(P/p) =
n

rp
where rp = gcd(n, νp(d(x))).

Since d(x) is square-free and d(a) = 0, we have (x − a) | d(x) but
(x − a)2 ∤ d(x), hence

νp(d(x)) = νpx−a(d(x)) = 1 =⇒ rp = gcd(n, 1) = 1

and so e(P/p) = 2
1 = 2.
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Degree one prime divisors of F = K (x , y)

It follows that there is a unique prime divisor P in F lying above p, and it has
degree one.

P

px−a

e=2
f=1

Moreover, x − a ∈ mp so x − a ∈ mP, i.e. φP(x) = a.

In addition,

2νP(y) = νP(y
2) = νP(d(x)) = e(P/p) · νp(d(x)) = 2 · 1 = 2

so νP(y) = 1 > 0 and therefore φP(y) = 0.
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Degree one prime divisors of F = K (x , y)

Thus, if we denote

P1(K ) = {p ∈ PF | deg p = 1}
P′

1(K ) = P1(K ) \ {q}
E ′(K ) = {(a, b) ∈ K × K | b2 = d(a)}

we get that there is a bijection

P′
1(K ) ∼= E ′(K )

which is given by
p 7→ (φp(x), φp(y))
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Now, let E(K ) := E ′(K ) ∪ {O}.
Then we can extend the bijection to P1(K ) → E(K ) by mapping q 7→ O.

The set E(K ) is called an elliptic curve, with O “the point at infinity".
Such curves have a special structure - their points form an abelian group with
respect to a certain geometric action.

Our goal is to derive the group action from the corresponding elliptic function
field.
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Recall that the divisors group Div(F ) has a subgroup

Prin(F ) := {(x) | x ∈ F×}.

The divisors class group is the quotient group

C(F ) := Div(F )/Prin(F ).

We denote the class of a by [a], so [a1] = [a2] iff

a1 = a2 + (z) for some z ∈ F×.

Recall that in this case deg a1 = deg a2 and dim a1 = dim a2.
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Claim 4.1
Let p1, p2 ∈ P1(K ). Then [p1] = [p2] ⇐⇒ p1 = p2.

Proof.
The direction (⇐) is trivial. Conversely, suppose [p1] = [p2]. Then
p2 = p1 + (z) for some z ∈ F×. In particular, p1 + (z) ≥ 0 and so z ∈ L(p1).
As p1 ≥ 0, we have K = L(0) ⊆ L(p1). In addition, by Riemann-Roch,
dim p1 = deg p1 + 1 − g = 1. Thus L(p1) = K and so z ∈ K×. It follows that
(z) = 0 and p2 = p1.

Finally, consider the following subgroup of C(F ):

C0 := {a ∈ Div(F ) | deg a = 0}/Prin(F ).
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Group structure on P1(K )

Claim 4.2
The mapping Φ: P1(K ) → C0 given by

p 7→ [p− q]

is a bijection.

Proof.
First, note that p ∈ P1(K ) =⇒ deg(p− q) = deg p− deg q = 1 − 1 = 0.
One to one: Suppose [p− q] = [p′ − q]. Then there exists z ∈ F× s.t.
p− q = p′ − q+ (z). Hence p = p′ + (z), so [p] = [p′] and by the previous
claim p = p′.
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Group structure on P1(K )

Proof.
Onto: Let [a] ∈ C0. Then deg(a+ q) = 1, so again by Riemann-Roch,
dim(a+ q) = 1. Hence there exists 0 ̸= z ∈ L(a+ q), i.e. z ∈ F× s.t.
(z) + a+ q ≥ 0. As deg((z) + a+ q) = 1, it must be that (z) + a+ q = p for
some p ∈ P1(K ). Therefore p− q = a+ (z), and [a] = [p− q] = Φ(p).

The bijection Φ: P1(K ) → C0 can be used to carry over the group structure of
C0 to the set P1(K ) as follows:

Definition 5
For p1, p2 ∈ P1(K ), define

p1 ⊕ p2 := Φ−1(Φ(p1) + Φ(p2)).
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Claim 5.1
(P1(K ),⊕) is an abelian group with q the zero element.
For p1, p2, p3 ∈ P1(K ),

p1 ⊕ p2 = p3 ⇐⇒ [p1 + p2] = [p3 + q]

Proof.

p1 ⊕ p2 = p3 ⇐⇒ Φ−1(Φ(p1) + Φ(p2)) = p3 ⇐⇒
Φ(p1) + Φ(p2) = Φ(p3) ⇐⇒ [p1 − q] + [p2 − q] = [p3 − q] ⇐⇒

[p1 − q+ p2 − q] = [p3 − q] ⇐⇒ [p1 + p2] = [p3 + q]
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Group structure on E(K )

Recall that we also have a bijection P1(K ) → E(K ) (with q 7→ O), which can be
used to get a group structure on E(K ), with O the zero element.

We want to understand this action - what is (a, b)⊕ (c , d) ?

Key observation: Let (a, b) ∈ E ′(K ) be a point with corresponding p ∈ P1(K )
(i.e. φp(x) = a, φp(y) = b). Let ℓ be the line αX + βY + γ = 0 (where
α, β, γ ∈ K , and α ̸= 0 or β ̸= 0). Consider the function

z := αx + βy + γ ∈ F .

Then (a, b) ∈ ℓ iff

αa + βb + γ = 0 ⇐⇒ αφp(x) + βφp(y) + γ = 0 ⇐⇒
φp(αx + βy + γ) = 0 ⇐⇒ φp(z) = 0 ⇐⇒ νp(z) > 0 ⇐⇒ p ≤ (z)0.
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Let us consider two particular cases.

Case 1: Suppose (a, b) ∈ E ′(K ) and b ̸= 0. Clearly, (a,−b) ∈ E ′(K ) as well.

Claim 5.3

(a, b)⊕ (a,−b) = O, i.e. (a,−b) = −(a, b).

P1

P2

X

Y
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Proof.
Let p1, p2 ∈ P′

1(K ) be the prime divisors corresponding to (a, b) and (a,−b),
respectively. We need to show that p1 ⊕ p2 = q, i.e. [p1 + p2] = [q+ q].
Both (a, b) and (a,−b) lie on the line X − a = 0, so by the observation the
function z = x − a ∈ F× satisfies (z)0 ≥ p1 + p2.
Since (x)∞ = 2q we have that (z)∞ = (x − a)∞ = 2q. Therefore
deg(z)0 = deg(z)∞ = 2 and (z)0 = p1 + p2. Overall,

(z) = (z)0 − (z)∞ = p1 + p2 − 2q =⇒ p1 + p2 = 2q+ (z)

so [p1 + p2] = [2q] as desired.

In fact, the claim holds also when b = 0. In this case, p1 = p2 lies above px−a in
K (x), and (z)0 = 2p1. Indeed, as we saw,

νP(x − a) = e(p1/px−a) · νa(x − a) = 2 · 1 = 2.
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Case 2: Suppose (a, b), (c , d) ∈ E ′(K ) and that the line passing through them
intersects E ′(K ) in a third (other) point (e, f ) (in particular, a ̸= c).

P1

P2
P3

P4

X

Y

Claim 5.4

(a, b)⊕ (c , d) = −(e, f ) = (e,−f )
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Proof.
Let p1, p2, p3 ∈ P′

1(K ) be the (distinct) prime divisors corresponding to
(a, b), (c , d), (e, f ) respectively. Since a ̸= c , the line passing through (a, b) and
(c , d) is of the form αX + βY + γ = 0 with β ̸= 0.

P1

P2
P3

P4

X

Y

Consider the function z = αx + βy + γ ∈ F×. Note that by the observation,
(z)0 ≥ p1+p2+p3. As for (z)∞, we have (by the strict triangle inequality) that
(z)∞ = 3q. Hence deg(z)0 = deg(z)∞ = 3 and (z)0 = p1 + p2 + p3.
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Proof.
Now, let p4 ∈ P′

1(K ) be the prime divisor corresponding to −(e, f ) = (e,−f ).
We saw that (z) = (z)0 − (z)∞ = p1 + p2 + p3 − 3q. Adding p4 to both sides,
we get

(z) + p4 = p1 + p2 + p3 + p4 − 3q. (4)

By the proof of the previous claim, we know that p3 + p4 = 2q+ (w) where
w = x − e ∈ F×. Substituting this in Equation (4), we obtain

(z) + p4 = p1 + p2 + 2q+ (w)− 3q.

Since (z)− (w) =
(
z
w

)
, this gives

p1 + p2 = p4 + q+ (z/w) ,

i.e. [p1 + p2] = [p4 + q] which means p1 ⊕ p2 = p4, as desired.
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