Introduction to Algebraic-Geometric Codes

Spring 2019

Exercise 6

Publish Date: 15 May 19

Due Date: 30 May 19

- **Exercise 6.1.** (a) Let (A, m) be a local ring, and let $a \in A \setminus m$. Show that for every $m \in m$, a + m is a unit.
 - (b) Let (A, m) be a local ring. Show that A is a local PID $\iff A$ is noetherian and m is principal.
 - (c) Let (A, m), (B, n) be local PID's with the same field of fractions, K, such that $A \subseteq B$. Show that A = B or B = K.

Exercise 6.2. Let $A \subset B$ be an integral ring extension. Let $P \in Spec(A)$, $Q \in Spec(B)$ such that $P = Q \cap A$.

- (a) Show that B/Q is integral over A/P.
- (b) Show that B_P is integral over A_P .

Exercise 6.3. Let $A \subset B$ be an integral ring extension.

- (a) Let $P_1 \subseteq P_2 \in Spec(A)$ and $Q_1 \in Spec(B)$ such that $P_1 = Q_1 \cap A$ show that there is $Q_1 \subseteq Q_2 \in Spec(B)$ such that $P_2 = Q_2 \cap A$.
- (b) Deduce the following statement: Let $P_1 \subseteq ... \subseteq P_n \in Spec(A)$ and $Q_1 \subseteq ... \subseteq Q_m \in Spec(B)$. Assume that m < n and that for every $1 \le i \le m$, $P_i = Q_i \cap A$. Then there are $Q_m \subseteq Q_{m+1} \subseteq ... \subset Q_n$ such that for every $1 \le i \le n$, $P_i = Q_i \cap A$. This is called the Going Up Theorem.
- (c) Prove that $\dim(A) = \dim(B)$.

Exercise 6.4. Let $I_1, \ldots, I_n \triangleleft A$ be pairwise coprime ideals, then $A/(\prod_{i=1}^n I_i) \cong A/I_1 \times \ldots \times A/I_n$. This is called the Chinese Remainders Theorem.