Topics in Coding Theory: Locallity and Interaction

Winter 2020

Exercise 3

Publish Date: 16 December 19

Due Date: 30 December 19

Exercise 3.1. Let $C: \mathbb{F}_q^k \to \mathbb{F}_q^n$ be a linear (r, δ, σ) -locally correctable code. Show that there is $C': \mathbb{F}_q^k \to \mathbb{F}_q^n$, that is a linear (r, δ, σ) -locally decodable code such that Im(C) = Im(C').

Exercise 3.2. Let RM(q, d, n) be the Reed-Muller code, as studied in class. In this question we want you to analyze the local correctability parameters (r, δ, σ) , with respect to the following correcting algorithm.

Let $n \geq 3$. Given an evaluation of a polynomial F corrupted in up to δ fraction of coordinates and a point $w \in \mathbb{F}_q^n$ the local corrector picks vectors $v_1, v_2 \in \mathbb{F}_q^n$ uniformly at random and considers a plane $M = \{w + \lambda v_1 + \mu v_2 \mid \lambda, \mu \in \mathbb{F}_q\}$ through w. The corrector queries coordinates of the evaluation vector corresponding to points in $M \setminus \{w\}$. Next the corrector computes a two- variable polynomial h that agrees with F on the biggest fraction of values, and outputs h(0,0).

Exercise 3.3. Let $q = 2^l$ and $\Lambda \subset \mathbb{F}_q[x, y, z]$ be the set of all polynomials that when projected on a line, are of degree less then q - 1. Namely:

$$\Lambda = \{ f \in \mathbb{F}_q[x, y, z] \mid \forall A, B, C, a, b, c \in \mathbb{F}_q. \deg(f(At + a, Bt + b, Ct + c)) \le q - 2 \}$$

Note that Λ is a vector space over \mathbb{F} . Give a lower bound on the dimension of Λ .

Exercise 3.4. Let A be a ring.

- (a) Assume A is a finite domain (i.e there are no zero dividers in A). Show that A is a field.
- (b) Prove or Disprove: Every two non parallel lines in A have a single intersection (a line in A is a function of the form $l(t) = at + b : A \to A$ where $a, b \in A$).
- (c) Let I be the set of all zero dividers in A. Prove or Disprove: I is an ideal.

Exercise 3.5. Let $P(x_1, \ldots, x_n) \in \mathbb{F}[x_1, \ldots, x_n], a, b \in \mathbb{F}^n$ and $i \in \mathbb{N}^n$.

- (a) Prove that $mult(P, a) \leq wt(i) + mult(P^{(i)}, a)$.
- (b) Let $P_{a,b}(t)$ be the polynomial $P(a+t\cdot b) \in \mathbb{F}[t]$. Show that for any $\lambda \in \mathbb{F}$, $mult(P_{a,b},\lambda) \geq mult(P,a+\lambda \cdot b)$.