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1 Introduction to Coding Theory

1.1 Introduction to the Course

This course will discuss error correcting codes and connections with algebraic geometry.
When coding theory began in the 1940s, the main mathematical technique was linear algebra.
Later, ring theory was used, notably the theory of polynomial rings and quotient rings. In
the 1970s, Goppa discovered a method for producing codes from algebraic curves, and his
class of curves gave some nice theoretical results in the theory of error correcting codes.
After spending some time on the basics of coding theory, we will develop the theory of
algebraic curves and algebraic function fields in order to define Goppa codes and prove some
results about their error correction capability. This will require spending some time on the
basics of algebraic geometry, allowing non-algebraically closed base fields. However, since
we will concentrate on curves, we will be able to bypass much of the difficult machinery of
algebraic geometry. In fact, it is possible to work purely field theoretically, as does the book
of Stichtenoth. However, I believe that this is too narrow a viewpoint, and that thinking
geometrically gives better insight.

One aspect where Goppa codes are beneficial is in finding asymptotic bounds on codes.
Without describing what this means, it is necessary to be able to produce long codes. One
of the most important class of codes, BCH codes, can produce long codes but at the expense
of requiring the use of increasingly large finite fields. Goppa codes, which can be viewed as
a generalization of BCH codes, get around this problem.

Finding long Goppa codes reduces the problem of finding algebraic curves with many
rational points. We will see that, for any algebraic curve over a finite field, there is an
analogue of the Riemann Zeta function. (There is also such an analogue for every algebraic

number field.) The Riemann hypothesis, which states that the Riemann Zeta’s nontrivial
1
29
the Zeta functions associated to curves over a finite field. We shall see how this fact leads
to a bound on the number of rational points of a curve, and what implications this has for

zeros lie on the line Re(s) = 5, and which remains unproven, was proved by André Weil for

coding theory.
There is a website for this course. The URL is math.nmsu.edu/~ pmorandi/math601.

1.2 Definition of Error Correcting Codes

Let F' be a finite field and let F™ be the collection of all n-tuples over F. This is an n-
dimensional F-vector space. A code over F' is a (nonempty) subset of F. It does not have
to be a subspace although all of our examples will be subspaces. We will sometimes write
elements of F™ as strings of elements without using commas or parentheses. The elements
of a code are called codewords, and the elements of F™ are called words.

Before we give some notation, we will follow the normal practice of writing IF, for the
unique, up to isomorphism, field with ¢ elements.



Example 1.1. Let F' = Fy. Then {0, 1} is a code in F and {00, 11} is a code in F. Likewise,
{000,111} is a code in F* and {00000,11111} is a code in F®.

Example 1.2. Let
0001111
H=10110011
1010101

Then the kernel of H is a code in F. This is called the Hamming code, and was the first real
example of an error correcting code. We will investigate this code further in a little while.

The important property of a code is its ability to correct errors. Let us discuss this idea
starting with an example. In 1979 the Mariner 9 spacecraft took black and white pictures of
Mars. These pictures were created by using 64 shades of grey. Each pixel of a photograph
was assigned a shade of grey. Each picture consisted of a 600 by 600 grid of pixels. Thus,
to transmit one photograph, the spacecraft had to send 360,000 pieces of data, each piece
representing the color of a pixel. Suppose that the shades of grey were represented by a
number from 1 to 64 in binary. Thus, we could represent any color with a string of six
binary digits. If, in transmission, an error was made, then NASA would incorrectly color the
corresponding pixel. Since electromagnetic activity can easily cause such errors, this would
be a problem. NASA wanted an encoding system that would take received data, perform
some sort of test, and determine if the received data was the same as that send, and, if not,
determine what was the actual transmitted data. What they did was to encode each color
as a string of 32 binary digits. Of the 232 possible strings, 64 of them were valid codewords.

Suppose that a codeword is transmitted, but errors are made. One can recognize that
an error is made if one sees that the received word is not a codeword. The main principle
of error detection, Maximum Likelihood Detection (MLD) assumes that few errors are more
likely than many errors. Therefore, the codeword that differs from the received word in the
fewest number of components is the most likely transmitted codeword. All error correcting
schemes use this principle. For example, with the code {000,111}, if 101 is received, then
MLD would assume that 111 was transmitted. However, with {00, 11}, if 01 or 10 was
transmitted, then MLD would not distinguish between 00 and 11. Even worse, with the
code {0, 1}, if a codeword is transmitted but an error is made, the error cannot be detected
because all elements of I’ are codewords.

To make more precise the notion of closeness of words, we define a metric on F™. The
function d : F" x " — Z defined by d(u,v) is equal to the number of components in which
u and v vary. In other words, if z; is the i-th component of a vector z, then

d(u,v) = |{i:u; #vi}|.

The function d is in fact a metric. To see this, note that the property d(u,v) > 0 and
d(u,v) = 0 if and only if u = v is clear. Similarly, d(u,v) = d(v,u) is clear. The triangle
inequality is not hard, but is not completely obvious. We need to show that if u,v,w € F",
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then d(u,w) < d(u,v) + d(v,w). Then

d(u,w) = [{i:u; # w; }.

We note that {i:wu; # w;} is a subset of {i:u; # v;} U {i:v; # w;} since if u; = v; and
v; = w;, then u; = w;. Thus,

du,w) = |{i:u; Zwi}| < i u; £ o U{i: v # w b
< Wi ug £+ {0 v £ wi}| = d(u,v) + d(v, w).

This metric will play a quiet but important role in coding theory.

1.3 Parameters of a Code

There are some important parameters attached to a code C' over F' = F,. The first, called
the length of the code, is the value of n for which C' is a subset of F™. The next, which we
will label k, is defined as

k = log,(|C]).

If C is a subspace of [, then k = dimp(C'), and so k is the dimension of the code. To define
the final parameter, we need some preliminary concepts. The third invariant is labeled d
and is the distance of the code C. It is defined as

d = min {d(u,v) : u #v € C}.

It should not be a problem that we are using d both for the metric and for the distance of a
code. These three parameters are then positive integers. The parameters, in order n, k, d,
of the codes of the first example are (2,1,2), (3,1,2), and (5, 1,5), respectively. With a little
calculation, we see that the parameters of the Hamming code are (7,4, 3). Occasionally we
will refer to a code with parameters n, k, and d as an (n, k, d)-code.

1.4 Linear Codes

A code that is a subspace of F™ is said to be a linear code. All of the codes we will consider
in this course will be linear codes. We will view the elements of ™ as row matrices. There
are some useful matrices attached to a linear code C' C F™. The first is called a generator
matriz. It is a matrix G whose rows form a basis for C'. This is an £ X n matrix, and its row
space is equal to C'. The code C' is then given, in terms of G, by

C:{UG:UGFk}.

The second matrix is called a parity check matriz. This is a matrix H of full rank for which
C is the right nullspace of H”. That is, v € C if and only if uH” = 0. Alternatively, u € C



if Hu® = 0. Thus, by rethinking about codewords as column matrices, C' is the nullspace of
H. Tt is then an (n — k) x n matrix. Moreover, GHT = 0 since tGHT = 0 for all z € F*.

To see the symmetry of these matrices, we first give some notation. We will use - for
the “usual dot product” on F™™; that is, u-v = ), w;v;. This is no longer an inner product
since u - u = 0 can occur with u # 0, for instance, if ' = Fy and u has an even number of
components equal to 1. In terms of matrix multiplication, u - v = wv?. Mimicking what is
done for inner product spaces, we define the dual code C* of a code C by

Ct={ueF:u-v=0foralveC}.

We claim that H is a generator matrix for C+ and G is a parity check matrix for C+. To
prove this, we first note the following matrix properties: if A is an 7 X s matrix, then (i) if
Az = 0 for all z € F*, then A = 0, and (ii) if yA = 0 for all y € F", then A = 0. These
are both straightforward to prove. As for the claim, first note that the row space of H is
contained in C+. For, if z € F** then 2H -v = (zH)vT = x(vHT)T = 2.0 = 0 for
all v € C. This implies that dim(C*) > n — k = n — dim(C). However, if u € C*, then
0=u-2G = u(zG)T = uGT2"T for all z € F*. Therefore, uGT = 0, and so C* is contained
in the right nullspace of G. Because G has rank k£ and is a k& x n matrix, its nullspace has
dimension n — k. Thus, dim(C*) < n — k, and so both inequalities yield dim(C+) = n — k.
Furthermore, this equality shows that the row space of H is C* and that C* is the right
nullspace of G. This finishes the proof of the claim.

Example 1.3. Let C' be the Hamming code. Then C' has parity check matrix H, as defined
earlier. A simple calculation shows that {1110000,0101010,1001100,1101001} form a basis
for C. Thus, we may take

_ = O =

0
1
1
1

o O O =
o = O O
o O = O
_ o O O

1
1
0
1
as a generator matrix for C. The code C* is then the nullspace of G, which has basis
{0111100,1101001,1011010}. Thus,

C+ = {0000000, 0111100, 1101001, 1011010, 1010101, 1100110, 0001111} .

Having a linear code allows us to give an alternative description of the distance of a code.
First of all, we define the weight of a word to be w(u) = d(u,0), the number of nonzero
components of . Then since d(u,v) = w(u — v), we see that

d=min{w(z):z € C,z #0}.
By listing out the elements of the Hamming code, it is easy to see that the smallest weight
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of a codeword is 3. For the dual code to the Hamming code, the listing of its elements shows
that C* has distance 4.

Example 1.4. The extended Golay code, discovered by Golay, the codiscoverer of the Ham-
ming code, has generator matrix

100000O0O0OO0OO0OO0OCO0OO0OT1TI1TTI1TTI1T1IT1TT1T1T1T1T1
6100000O0OO0OO0OO0OO0O1T1T1TO01110O00O0T120
6oo0o100000O00OO0OO0OO0O11011T1O0O0O0T1O0T1
6ooo01o00000O0O0OO0O1O01110O0O01O011
0cooo0oo010000OO0OCO0OO0OT1T1TT11O0O0O01O01T10
G cooo0oo0010000O0O0O1110001011O01
cooo0oo000100000110001O011O0T171
6cooo0oo00001000010001011O011T1
0coooo0o0000100O0O1O0O0101101110
6coooo0o0000010O01O010110111O00
cooo0oo0o060000010110110111000
coooo0oo0o00000O0O0I11O0110111O00O001

This is a 12 x 24 matrix. It can be viewed in the form [B | A] with A and B both 12 x 12
matrices. In fact, G = [I15 | A], where

011111111111
111011100010
110111000101
101110001011
111100010110
A 111000101101
110001011011
100010110111
100101101110
101011011100
1101101110060
101101110001

The Golay code is the code C', where C'is the row space of G. The matrix G has rank 12, so
the code has dimension 12. Thus, there are 2'2 = 4096 codewords. This code has distance
8, which can be verified in a hopelessly tedious manner by calculating the weight of all 4095
nonzero codewords, or by proving some facts, by induction, about the rows of G. One sees
that the distance is at most 8 since the last row has weight exactly 8.

The Voyager spacecrafts visited Jupiter, Saturn, Uranus, and Neptune, taking pictures of
each planet and their moons. The following picture was taken by Voyager 2. The photographs



taken by these spacecrafts utilized the Golay code to encode the data representing the
pictures. A photograph consists of a rectangular grid, and at each grid point, or pixel,
a color is given. For the Voyager spacecrafts, the use of the Golay code allowed the photos
to be made with up to 4096 colors. Each color was represented as a codeword in the Golay
code. To send the information representing one picture, each pixel was described by the
codeword representing the color of that pixel. This codeword was a 24-tuple of binary digits.
Since the Golay code has distance 8, it can correct up to three errors. Thus, each codeword
transmitted could have up to three errors without losing any data.

1.5 Error Correction

We make formal the meaning of an error correcting code, and we shall shortly see the
connection between the distance and the error correction capabilities of the code.

Definition 1.5. A code C is s-error detecting if whenever at least one but at most s errors
are made in any codeword, then the resulting word is not a codeword.

From this definition and that of the distance of a code, it is clear that a code of distance
d can detect up to d—1 errors. A more important definition for us is that of error correcting.

Definition 1.6. A code C' is said to be t-error correcting if a word is a distance at most t
from some codeword, then its distance from every other codeword is greater than t.

To help to understand this definition, suppose that a codeword v is transmitted and
at most t errors are made, meaning at most ¢ components of the codeword are changed,
resulting in a word w. If the code is t-error correcting, then since w is a distance of at most
t from v, then the distance from w to any other codeword is greater than t. Therefore, v
is the closest codeword to w. Using MLD, we would correct w to v, and thus recover the
correct codeword.

Example 1.7. The code {0,1} cannot correct any errors, nor can {00,11}. However,
{000,111} can correct 1 error. If 111 is transmitted but one error is made, the result

has distance 2 from 000. The same is true starting with 000. The code {00000,11111} can
correct two errors.

Example 1.8. The Hamming code can correct one error. Moreover, there is a nice decoding
algorithm, if ' = Fy. Suppose that v is a codeword, and one error is made in transmitting
v, resulting in a word w. Then w = v + ¢;, where ¢; is the i-th standard basis vector of
F7. Multiplying by the Hamming matrix H, we get Hw = H(v + ¢;) = Hv + He; = He;.
Now, an easy calculation shows that He; is the i-th column of H. Therefore, if we identify
which column of H is Hw, then we will determine . Once we know ¢, we can recover v as
v = w + e;. This example illustrates an aspect of coding theory; we would like codes that
can correct errors and for which there is an efficient decoding algorithm.



We know show the relation between the distance and the error correction capability of a
code.

Theorem 1.9. Suppose that a code C' has distance d. Then C' is t-error correcting for
t = [(d—1)/2] but is not (t + 1)-error correcting.

Proof. We give a metric-theoretic proof of this fact. Let ¢t = [(d — 1)/2]. Suppose that w is
a word a distance at most ¢ from v. We need to prove that w is a distance greater than ¢
from any other codeword. Suppose that u is another codeword. If d(w,u) < ¢, then consider
the closed disks of radius ¢ centered at v and u, respectively. Then w is in both disks. By
the triangle inequality, we have

d(v,u) < d(v,u) + d(u,w) < 2t < d,

a contradiction to the definition of d. Therefore, d(w,u) > t, so the code is indeed ¢-
error correcting. To see that C' is not (¢ + 1)-error correcting, let u,v be codewords with
d(u,v) = d. Note that d = 2t + 1 or d = 2t 4 2, depending on whether d is odd or even.
If we change t + 1 of the components of u that differ from those of v to make them equal
to the corresponding components of v, then we obtain a word w with d(u,w) =t + 1 but
d(w,v) = d(u,v) — (t+1) =d— (t+1) < t+ 1. This shows that C is not (¢ + 1)-error
correcting. ]

From this theorem it is clear that the Hamming code is 1-error correcting since its distance
is 3.

If we have a linear code C with parity check matrix H, we can use cosets to help decode.
Given a word w, the syndrome of w is Hw. Therefore, the syndrome is 0 exactly when the
word is a codeword. The possible syndromes are in 1-1 correspondence with the cosets of
C, since C'+u = C 4w if and only if Hu = Hw. If a codeword v is incorrectly transmitted
as w, then e = w — v is the error word. We have He = Hw, so e and w have the same
syndrome. Since C'+ w = C + e, we look in the coset C' + w for the smallest weight vector;
this is our error word e by MLD. To use this coset decoding, we need a list of syndromes
and corresponding smallest weight error vectors. These vectors are called coset leaders. For
example, the following table would be the coset decoding table for the Hamming code.

Syndrome Coset Leader
000 0000000
001 1000000
010 0100000
011 0010000
100 0001000
101 0000100
110 0000010
111 0000001




The Maple worksheet cosets.mws, available on the class website, will produce this table.

1.6 Bounds on Codes

Suppose you have to transmit two pieces of information. You could use the code {0,1},
but that would give you no error correction. You could use {000,111} to be able to correct
one error, or up to % of the digits. You could use {00000,11111} and correct up to two
errors, or % of the digits. In general, by making the strings longer, we can have better error
correction. However, longer codewords mean more effort in sending, receiving, and decoding.
So, we would like to have codes as short as possible with as good error correction as possible.
What restrictions are there? Are there any relationships between the parameters n, k, and
d? There are several relationships, all that give upper bounds or lower bounds for d. To
state some of these bounds, we set A,(n,d) to be the largest size of a code of length n and
distance d. Much of coding theory has been to determine the values of this function and in
determining the asymptotic behavior of A,(n,d) as a function of 6 = d/n as n — oo.

To help in some of the proofs, we first give a counting argument. Consider the sphere of
radius r centered at a word v. To pick a word a distance ¢ from v, we need to change ¢ of
the components of i; there are (’Z) choices for these components. Each component can be

n

') (g — 1)" total words a distance

changed in ¢ — 1 ways since |F| = q. Therefore, there are (2

of i from v. Therefore, the sphere contains a total of _7_; () (¢ — 1) words.

There are many bounds on codes, although we restrict our attention to just three. The
first bound gives a lower bound of the size of a code with given parameters n and d. Most
bounds give upper bounds.

Proposition 1.10 (Gilbert-Varshamov Bound).

Ay(n,d) > =3 a -
D) 2 Sy Ty

Proof. Let C' be a code of maximal size of length n and distance d. The spheres of radius

d — 1 centered at codewords then cover the entire space of words, since if there is a word a
distance of at least d from every codeword, then we could add it to C' without changing n
or d. If M is the size of this code, then from our calculation of the size of spheres, we have

M - Zf:_& (")(g — 1)" > ¢", which yields the bound. O

This bound says that there exists a code of length n and distance d, and with M elements,
such that M > ¢"/ <Z?;01 (?)(q — 1)1> It does not say anything about arbitrary codes.

Proposition 1.11 (Singleton Bound). Let C' be a code with parameters n, k, and d. Then
d <n—k+1. Therefore, A,(n,d) < ¢"~41.

Proof. Consider the function ¢ : C — F"~4! given by ¢(z1,...,2,) = (21, ..., Tp_as1). In
other words, ¢ removes the last d — 1 components of a codeword. Since every codeword of
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C' has weight at least d, the function ¢ is 1-1. Consequently, |C| < ‘F”_d“‘. Since this is
true for any code of length n and distance d, we have A,(n,d) < |F"~¢!| = ¢"~4*1. Taking
logarithms to the base ¢, we get k <n—d+1,ord <n—k+ 1. O

If a code C satisfies d = n — k + 1, then the code is said to be an MDS code (maximum
distance separable).
The following bound is also called the sphere packing bound.

Proposition 1.12 (Hamming Bound). Ift = [(d — 1)/2], then

n

q
Aq(”> d) < = n .
Yo (g —1)
Proof. Suppose that we have a code with length n and distance d, and for which it has M
codewords. Let v be a codeword, and consider the sphere of radius ¢ centered at v. As we
have seen this sphere contains Y °;_, (7)(q — 1)* words. Since the code can correct ¢ errors,

the spheres of radius ¢ centered at codewords are disjoint. Therefore, since there are ¢" total

q" < M: (7;) (¢ — 1),

n

words,

or
q

DN QIPEET

Since this is true for any such code, we get the Hamming bound.

M

These last two codes give an upper bound, in terms of n and d, of the number of elements
of any code with length n and distance d. ]

The codes Goppa constructed from algebraic curves yield a better asymptotic lower bound

than the Gilbert-Varshamov bound. By asymptotic bounds, we mean the investigation of

. log,(Aq(n, d))

limsup ———=.

n—o0 n

The reason for considering asymptotic bounds comes from Shannon’s channel coding theo-
rem. If we define the information rate of a code to be k/n, then the theorem says that given
any € > 0, there is a code with information rate at least R for which the probability of in-
correct decoding of a received word is less than e. However, in order to make the probability
of incorrect decoding low with a fixed k/n, then n must be large. This theorem is not stated
quite correctly; there is a limit on how large the information rate can be; this limit is called
the capacity of the channel. A description of this can be found in Roman’s book.
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1.7 Cyclic Codes

To define some of the important classes of codes, we first define cyclic codes. First of all, let
o F" — F" be the shift map; that is, o(z1,...,z,) = (Tp, 1,22, ..., 2T,_1). A code C is
said to be cyclic provided that o(C) = C. To give an alternate description of cyclic codes,
first consider the F-algebra of polynomials F'[x]. We may view F™ as a subspace of F[z] via
the map ¢ : (ag,...,an_1) — ao+ a1z + -+ a, 12" . Then F™ is mapped isomorphically
onto the subspace of polynomials of degree less than n. We can interpret ¢ with respect to
this embedding. Since o(ag, ..., a,-1) = (@p_1, a0, ..., a,_2), Wwe have

o (o(ag,...,ap-2)) = Gp_q1 + apx + -+ + o™ ' =a, 1 + z(ag+ -+ an,gx”_z)

=z(ag + -+ p9t" % + ap_12" ) mod(z" — 1).

Because of this, if we view F™ = F[z]/(x™ — 1), then o corresponds to multiplication by x.
Therefore, a code C C Flx]/(2™ — 1) is cyclic if and only if xC = C. Since C' is already an
F-vector space, this additional condition is equivalent to that C' be an ideal of F[z]/(2™ —1).
Now, since F[z] is a PID, every ideal of F[z]/(z™ — 1) is principal and is generated by a
divisor of ™ — 1. Thus, cyclic codes of length n are in 1-1 correspondence with divisors of
" — 1.

Suppose that 2™ —1 factors as 2" —1 = g(x)h(z). Consider the code C' = (g(x))/(z" —1);
that is, C' is the code consisting of all polynomial cosets that are multiples of g(z). If

g(z) = go + g1z + -+ + 2" %, then {g(x),xg(as), . ,a:kflg(a:)} is a basis for C', where

f(z) = f(z)+ (z" —1). Therefore, k = n—deg(g(z)). We call g(z) the generator polynomial
of the code.

Let K be a finite extension field of F. If ay,...,a; € K, let f;(x) be the minimal
polynomial over F' of a;, and let g(z) be the least common multiple of the f;(z). Then g(x)
is the monic polynomial of least degree for which each «; is a root. We then can use g(x) to
build a cyclic code of length n, where n is any integer for which g(x) divides z™ — 1. This
code then consists of all polynomial cosets p(z) for which p(a;) = 0 for all i. Note that for
g(x) to divide 2" — 1, we need each «a; to be a root of ™ — 1; that is, we need af* = 1.

Recall from the theory of finite fields, the multiplicative group of any finite field is cyclic.
A generator of the multiplicative group F™ is called a primitive element of F. If «a is a
primitive element of ,,.1, then all powers of « are roots of ™ — 1, and we can use powers
of alpha to build a code of length n. Note that n + 1 must be a power of a prime for F,,
to exist.

Example 1.13. With a rearrangement of its digits, the Hamming code is an example of
a cyclic code. To see this, let o be a primitive root of Fg. Since we may view Fg as
Fg = Fy[z]/(2® +x + 1), we can view its elements as 3-tuples over Fy. The nonzero elements
1,a,...,a of Fg then correspond to the columns of the Hamming matrix H. By reordering
the columns if necessary, we view H = (1, ,...,a®), where we think of these elements as
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column vectors. For example, if a = 7, then

a’ =100,
o' =010,
a? =001,
o® =110,
ot =011,
a® =111,
a® = 101.

Therefore, we have

011
H = 1 10
1 11

o O =

0 0
10
01

-

The condition for a vector v = (ay, ..., ag) to be in the (rearranged) Hamming code is

Qo

ai
0=Hv=(1,a,...,06) - ) = ap+ a1 + - - - + agab.

Qg

Therefore, by viewing v as a polynomial v(x) € Fy[z]| of degree at most 6, we see that v is
a codeword if and only if v(a) = 0. In fact, the generator polynomial is then the minimal
polynomial of o, which is 23 4+ 2 + 1.

Example 1.14 (BCH Codes). Let n = ¢" — 1, and let a be a primitive element of the
field Fym. If € is a positive integer with e < n, we can use the elements o, a?,..., a7 to
build a code. This code is then the set of polynomial cosets p(z) with p(a) = p(a?) = --- =
p(a®™!) = 0. While we do not show it here, this code has distance at least e, and so can
correct |(e —1)/2] errors. The integer e is called the designated distance of the code, and is

a lower bound of the actual distance.

Example 1.15 (Reed-Solomon Codes). Let n = ¢ — 1 and let a be a primitive element

of F,. Then the code of all polynomial cosets p(x) with p(a) = p(a?) = -+ = p(a®!) =0
is called a Reed-Solomon code. By the claim of the previous example, the distance of
this code is at least d. The generator polynomial is g(z) = (z — a)---(z — a?!), so

k =mn—deg(g(z)) = n —d+ 1. Therefore, by the Singleton bound, the distance of the code
is exactly d, and the code is an MDS code.

Example 1.16. Suppose n = 7 and d = 4. The Reed-Solomon Code we get from this data
has k = 4. The resulting code is
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We now consider some specific examples of BCH codes.

Example 1.17. Consider Fi5 = Fy[z]/(2*+ 2+ 1), the splitting field over Fy of z* +z+1. A
short calculation shows that any root v of 244241 is a primitive element of Fi5. To see this,
recall that since Fj; has order 15, Lagrange’s theorem implies that « is a primitive element
provided that a® # 1 and a® # 1. Since the minimal polynomial of « is 2* + 2 + 1, which
does not divide 2% —1 or 2° — 1, neither of these polynomials has « as a root. We consider the

6 as roots. Then n = 15. To calculate

BCH code of all polynomials cosets having o, o2, ..., «
k, we calculate the generator polynomial g(z). This is the least common multiple of the
minimal polynomials of the six roots. The minimal polynomial of o and o? is o* + z + 1.
The minimal polynomial of o® and af is #* + 2® + 22 + 2 4+ 1 and the minimal polynomial
of a® is 22 + x + 1. One way to find these is to note that every element of Fi¢ is a root of
20 — 2. If you factor this into irreducible polynomials, you need to check which irreducible
has a given o' as a root. Alternatively, you can find the generator polynomial by using the
Maple worksheet generator.mws, which is available on the course website. In any case, we
get g(z) = 21 + 2% + 2° + 2 + 2% + v + 1. This has degree 10, so k = n — deg(g(z)) = 5.
This code can correct three errors since the designated distance is 7.

Example 1.18. Consider the code built from the same field 14 but with designated distance
5. Then the code comes from the roots «, a2, a?, a*. In this case, the generator polynomial
is 28+ 2"+ 2%+ 2+ 1, and son = 15 and k = 15 — 8 = 7. By lowering the designated

distance, we have increased the dimension of the code.
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2 Introduction to Algebraic Geometry

While the error correcting codes defined by Goppa can be described purely in terms of fields,
they are better understood by also viewing them geometrically. We will discuss the basic
concepts of algebraic geometry and see how the study of (nonsingular projective) algebraic
curves is equivalent to the study of algebraic function fields in one variable. Furthermore,
by thinking of fields, we will help to justify why we need to discuss projective curves instead
of restricting only to affine curves. A brief treatment of the concepts of algebraic geometry
needed for coding theory can be found in the book Codes and Curves, by Walker.

To do algebraic geometry we need to use algebraically closed fields. Recall that a field k is
algebraically closed if every nonconstant polynomial in k[z] has a root in k. The fundamental
theorem of algebra states that C is algebraically closed. Neither R nor Q is algebraically
closed as 2% + 1 has no root in either field. Nor is any finite field F algebraically closed, for
if ' ={ai,...,a,}, then (x —ay)---(x —a,)+1 has no root in F. If F'is an arbitrary field,
then it has an algebraic extension that is algebraically closed; this field is called an algebraic
closure of F'. Such a field is unique up to isomorphism.

2.1 Affine Curves

Let k be an algebraically closed field. We denote the polynomial ring over k& in 2 variables by
klx,y]. Algebraic geometry studies solutions to polynomial equations. We define the affine
place A%(k) to be the set k? of all pairs over k. If it is not important to keep track of the
field k, we will write A? in place of A?(k). If P = (a,b) € A? and f € k[z,y], we will denote
by f(P) the evaluation of f at P. If f € k[x,y], then the affine curve f = 0 is defined to be

Z(f)y={Pe€A’: f(P)=0}.
This set is sometimes called the zero set of f.

Example 2.1. The curve y = 22 in A? is a parabola. In general, a conic section is the

zero set of a polynomial of degree 2. For instance, 22 + y? = 1 is a circle and zy = 1 is a

3

hyperbola. The curve y* = 23 is sometimes called a cuspidal cubic curve.

Example 2.2. An elliptic curve is a curve given by an equation y? = f(z), where f(z) is a

3

cubic polynomial with no repeated roots. For example, y?> = 23 — x is an elliptic curve.

Example 2.3. A hyperelliptic curve is a curve given by an equation 3> = f(x), where f(x)

is a polynomial of degree at least 4 and with no repeated roots. For example, 3y = 2° — 1 is

an elliptic curve over C, or over any algebraically closed field of characteristic not 5.

Example 2.4. Suppose that k£ = R, a field that is not algebraically closed. There are no
solutions to the equation z* + y? +1 = 0 over R, so Z(z? + y* + 1) is empty. However,
if k& = C, then there are solutions, including (i,0). It is to have solutions to polynomial
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equations that the base field is assumed to be algebraically closed. If f(x,y) is a polynomial
over an algebraically closed field k, and if b € k, then f(x,b) is a polynomial in the one
variable x. If f(z,b) is not constant, then it has roots in k, and so f(x,y) = 0 has solutions

in A%(k).
If X is an algebraic curve over k, then the ideal of X is
I(X)={f €klz,y]: f(P)=0forall Pe X}.

If f(x,y) = p(x,y)* - pu(z,y) is the factorization of a polynomial f into irreducible
factors, then it is easy to see that I(Z(f)) = (p1 - pn). Moreover, the coordinate ring of X
is the quotient ring I'(X) = k[z, y]/I(X). One way of thinking about the coordinate ring is
to consider it the ring of polynomial functions on X. For, two polynomials f and g induce
the same function X — k precisely when f — g € I(X), which is equivalent to the cosets f
and g being equal.

A topological space is said to be irreducible if it cannot be written as the union of two
proper subcurves. If f = gh, then Z(f) = Z(g) U Z(h). From this, if f is a squarefree
polynomial, it follows that Z(f) is irreducible if and only if f is irreducible. Alternatively,
X is irreducible if and only if T'(X) is an integral domain.

2.2 Projective Varieties

For students who have studied topology, the construction of projective varieties parallels
that of constructing the real projective plane. We define an equivalence relation ~ on
A3\ {(0,0,0)} by defining that (a,b,c) ~ (a,b,c) if there is a nonzero scalar A\ with
a = Xa, bV = \b, and ¢ = Ae. Geometrically, the equivalence class of a point is the line
through the origin that passes through the point. We will write (a : b : ¢) for the equivalence
class of (a,b,c), and P? will denote the set of all equivalence classes. This is the projective
plane. Note that (a : b : ¢) represents a point in the projective plane only if at least one of
the coordinates is nonzero.

Note that polynomial functions are not well defined on points of projective space. How-
ever, we can get around this problem. A polynomial f € k[z,y, 2] is said to be homogeneous
if every monomial of f has the same degree. Alternatively, f is homogeneous if there is an
integer m with f(Az, \y, \z) = X" f(x,y, 2) for all X € k. If f is homogeneous and P € P?
then the equation f(P) = 0 is well defined; in other words, if P ~ @, then f(P) = 0 if
and only if f(Q) = 0. Therefore, we can define zero sets of collections of homogeneous
polynomials. If f is a homogeneous polynomial, then the projective curve f = 0 is the zero
set

Z(f) = {P € P": f(P) = 0}.

We define a projective curve to be irreducible in exactly the same way as for affine curves;
if f is a squarefree homogeneous polynomial, then it follows that Z(f) is irreducible if and
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only if f is irreducible.
We can define a coordinate ring for projective curves. If X is a projective curve, then
I(X) is defined to be

I(X)={{f € k[z,y, 2] : [ is homogeneous and f(P) =0 for all P € X}).

The homogeneous coordinate ring S(X) is the quotient ring k[z,y, z]/I(X). As with affine
curves, a projective curve is irreducible if and only if its ideal is a prime ideal, and this
happens exactly when S(X) is an integral domain.

Example 2.5. Consider the projective parabola X given by yz = 22. If (a: b: ¢) € X, then
bec = a®. If ¢ # 0, then by dividing by ¢, we may assume that ¢ = 1. Then, (a,b) is on the
affine parabola y = 2. On the other hand, if ¢ = 0, then a = 0, and b # 0 for (a : b : ¢) to
be a valid point. Then, by dividing by b, we have the point (0 : 1: 0). Thus, we can think
of X as the union of the affine parabola y = z? and the extra point (0 : 1 : 0). Note that
the affine parabola is obtained by setting z = 1 in the equation yz = x?. Moreover, there is
another affine parabola inside X, and this other curve contains (0 : 1 :0). If we set y = 1,
then we have the equation z = x?, which again represents a parabola. The point (0 : 1 : 0)
is a point of this affine parabola. The purpose of considering this second affine parabola is
that any point of X is a point on some affine curve in X.

Example 2.6. Let X be the projective elliptic curve y?z = 23 — x22. The affine elliptic
curve y?> = 3 — z is an affine curve in X; we can map it into X via (a,b) — (a: b:1). The
image is X —{(0:1:0)}; if (a:b:c) € X and ¢ = 0, then the equation y*z = 2% — 2>
forces a = 0. Then b # 0 since (a : b : ¢) € P2. Thus, we may divide by b to assume b = 1,
and so the only point on X for which ¢ =01is (0:1:0). As with the previous example, the

affine equation is obtained from the projective equation by setting z = 1.

Example 2.7. In the previous examples we started with a projective curve and found an
affine curve inside it. In this example we start with an affine curve and produce a projective
curve. Let Y be the curve y = 23. By adding a third variable z, we can use y — 22 to get the
homogeneous polynomial y22—x2. The affine curve Y sits inside the projective curve yz? = 3
as in the previous examples. Similarly, y?> + 1 = 2* yields the homogeneous polynomial
Y222 + 2* = x*. What we are doing is adding enough copies of z to each monomial so that
each has degree equal to the highest degree of a monomial of the original polynomial. To have
a formula for doing this, if f(x,y) has degree d, then z¢f(x/z,y/z) is the homogenization
of f(z,y). The resulting projective curve is called the projective closure of the affine curve
f = 0. In general, if Z(f) is a projective curve, then any point of the form (a : b : 0) of
Z(f) is called a point at infinity. If g(x,y) = f(z,y, 1), then Z(f) is the union of the affine
curve g = 0 and the points of infinity. The polynomial g(z,y) is called a dehomogenization
of f(x,y, z) (at the variable z).
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Note that if f*(z,y, z) is the homogenization of f(z,y), then f(z,y) = f*(x,y,1). Con-
versely, if g(z,y, z) is homogeneous of degree d, and if f(x,y) = g(z,y, 1), then

9(z,y, z) = 2@ =del) fh(g ),

We do not, in general, recover g(z,y, z) by homogenizing ¢g(z, y, 1) since this polynomial may
have smaller degree than the degree of g(z,v, z). For example, if g(z,y,2) = 2% + 2z + yz,
then g(z,y,1) =1+ x + y has degree 1 while g(x,y, z) has degree 2.

2.3 The Function Field of a Curve

Suppose that an affine curve X is irreducible. Then its coordinate ring I'(X) is an integral
domain, and so has a quotient field, which we denote by k(X). This is the field

K(X)={g/h:g,heD(X),h%0}.

Let T and 7 be the images of x and y in I'(X). The definition of I'(X) shows that I'(X) =
k[z,y]. That is, I'(X) is generated as a k-algebra by T and 7. The field k(X)) then contains
the field k(7,y) generated by T and 7. Since the quotient field of an integral domain is the
smallest field containing the domain, we see that k(X) = k(Z,7). Therefore, k(X) is the
field extension of k generated by two elements u, v, and subject to the relation f(u,v) = 0.
To give other another view of the function field, suppose that X is the zero set of the
irreducible polynomial f(z,y). If we define an equivalence relation ~ on the ring

S ={g(x,y)/Mz,y) : g, h € k[z,y],h & (f)}

by g/h ~ ¢' /b if gh' —g'h € (f) C k[z,y], then k(X) = S/ ~. To verify this interpretation,
note that an arbitrary element of k(X) is of the form §/h with g,h € k[x,y], where we
continue to write bars to represent the image of a polynomial in ['(X). When are g/h and
¢'/h' equal in k(X)? Since k(X) is the quotient field of I'(X), this occurs exactly when
gh/ = ¢’h. Finally, this occurs when gh/ — ¢’h = 0, or gh' — ¢'h € (f).

We may define a topology on a curve by defining a set to be open if it is empty, or if its
complement is finite. Thus, proper closed sets are finite. This is a special example of the
Zariski topology on an algebraic variety; curves are special examples of varieties. We will
view k(X)) as the field of rational functions defined an open subset of the curve X; a rational
function is simply a function that can be represented as a quotient of polynomials.

Example 2.8. The function field of the affine parabola y = 2?2

is the quotient field of
klz,y]/(y — x?). This ring is isomorphic to k[t], the rational function field in one variable ¢;
they are isomorphic via the map that sends ¢ to o + (y — x?). Therefore, the function field

is isomorphic to k(t).

Example 2.9. The coordinate ring of the curve X = Z(y?—x?) is k[x, y]/(y*>—2*). This ring
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is isomorphic to k[t 3], a subring of k[t]. These rings are isomorphic via the map T ~ 2
and § +— t3. The function field of this curve is then the quotient field of k[t 3], which is
k(t). Note that y/x represents a rational function on X as does z?/y. Furthermore, these
functions agree since y/x = 2?/y in k(X). Therefore, a rational function can be represented
in more than one way as a quotient of polynomials.

3 3

Example 2.10. The coordinate ring of the elliptic curve y* = z* — x is k[z, y|/(y* — 2° — z).
We claim that its function field is isomorphic to k(t) (\/t3 — t). To see this, note that the
coordinate ring is k[Z,y|, and so its function field is k(Z,y). That is, the function field is
generated as an extension field of k by & and 7. Now, we have 32> = > — Z. Therefore 7 is
algebraic over k(Z), and so k(Z,7) = k(Z)(y) = k(T) (\/53 - E) The element T cannot be

algebraic over k, so k(T) = k(t), the rational function field in ¢.

Let f(z,y, z) be an irreducible homogeneous polynomial, and let X = Z(f). We can also
define a function field of X. Let ~ be the equivalence relation on the set

{9(z,y,2)/h(z,y,2) : g,h € k[z,y, 2] are homogeneous of the same degree, h ¢ (f)} U {0}

given by g/h ~ ¢'/h" if and only if gh' — ¢’h € (f). The function field k(X) is then the set
of equivalence classes, under the natural operations.

Note that any f/g € k(X) determines a well defined function on an open subset of X: if
g, h are both homogeneous of degree d, then if A is nonzero, then

g(Aa, b, Ac)  Ng(a,b,c)  g(a,b,c)
h(ha, Ab,A\c) — Mh(a,b,c)  hla,b,c)’

The function g/h is defined for all points P except when h(P) = 0. We may then think of
k(X) in much the same way as we think of the function field of an affine curve.

We now show that the function field of a projective curve can be calculated by finding
the function field of an affine curve.

Proposition 2.11. Let f(x,y,z) be an irreducible homogeneous polynomial. Let X = Z(f)
be a projective curve and if U is the affine curve Z(f(x,y,1)), then k(X) = k(U).

Proof. We will define a ring homomorphism ¢ : I'(U) — k(X) and show that ¢ is injective.
Thus, ¢ induces a homomorphism k(U) — k(X), which necessarily is injective. We will then
be done by showing that this map is surjective. To define ¢, write g(x,y) = f(z,y,1). For
h(z,y) € klx,y], define p(h) = h(x/z,y/z). Note that if deg(h) = d, then h(x/z,y/2) =
h'(x,y,2)/2%, and this represents an element of k(X). This map is well defined, since if
B — h € (g), then b = h + gl for some | € klx,y]. Then h'(z/z,y/z) = h(z/z,y/z) +
g(x/z,y/2)l(x/z,y/z). By our hypothesis on f, we have g(x/z,y/2) = f(x,y,z)/z%80).

Therefore, g(x/z,y/z)l(x/z,y/z) = 0 in k(X) by the definition of k(X). Thus, p(h) =
@(R); this proves that ¢ is well defined. It is a simple exercise to see that ¢ is a ring
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homomorphism. To prove injectivity, suppose that ¢(h) = 0. Then h(z/z,y/z) = 0 in
k(X). Note that h(z/z,y/2) = h"(z,y,2)/2%" . For this to be zero in k(X), we have
hh(x,y, 2) = f(x,y, z)m(x,y, ) for some m. Dehomogenizing, we get

hz,y,z) =h"(z,y,1) = f(z,y,)m(z,y,1)
= g(z,y)m(z,y,1).

Therefore, h = 0. Thus, ¢ is injective. For surjectivity, every element of k(X) is rep-
resented by a quotient h(x,y,z)/l(z,y,z) of homogeneous polynomials of the same de-
gree. Let their common degree be d. Then h(x,vy, 2)/l(z,y,z) = 2¢h(x,y,1)/2%(x,y,1) =
h(z,y,1)/l(z,y,1). This represents an element of k(U), and this element maps via ¢ to
h(z,y,z)/l(z,y, z). Therefore, ¢ is surjective, and so k(U) = k(Z). O

Example 2.12. Let X be the projective parabola yz = x?. The affine parabola ¥ =

Z(y — x?) is obtained from dehomogenizing yz — x%. Therefore, k(X) = k(Y) = k(t).
Similarly, the function field of yz? = 2® is k(t), and the function field of the projective
elliptic curve y?z = 2* — 22?2 is k(t) (V& — t).

There are important subrings of the function field of a curve. First, if X is a projective
or affine curve, then

E[X] = {p € k(X) : ¢ is defined at every point of X'} .

This is called the ring of reqular functions on X, and is the ring of globally defined rational
functions on X. If X is affine, then one can show that k[X] = T'(X), but that if X is
projective, then k[X] = k. Next, let P € X. Then the local ring of X at P is the set

Op(X) ={p € k(X) : ¢ is defined at P}.

This is the ring of regular functions defined locally at P. For ¢(P) to be defined, ¢ must be
defined in an open neighborhood of P, since if ¢ = g/h, then P ¢ Z(h), and so ¢ is defined
on the open neighborhood h # 0 of P. For convenience, we will typically write Op in place
of Op(X). It is a local ring; its unique maximal ideal is

Mp={p € Op:p(P)=0}.

A short exercise shows that Mp is an ideal of Op. Furthermore, if ¢ € Op \ Mp, then we
may write ¢ = f/g with f(P) # 0. Then g/f € Op is an inverse for . Therefore, since
every element outside Mp is a unit, Mp is the unique maximal ideal of Op. If Y = Z(f) is
an affine curve, then Op(Y) = {g/h € k(Y) : h(P) # 0}.

Proposition 2.13. Let P be a point of an irreducible affine curve X = Z(f), and let
mp = {g € k[X] : g(P) = 0} Then Op = k[X]mp-
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Proof. By definition, k[X] C Op. Moreover, everything in k[X]\ mp is invertible in Op, so
E[X]mp € Op. Conversely, let ¢ € Op. Then we may write ¢ = g/h with g,h € k[X], by
the definition of k(X). Since ¢ is defined at P, we have h(P) # 0. Therefore, h ¢ mp, so
g/h € k[X|m,. Thus, Op = k[X]n,. O

It is not hard to show that if P = (a,b), then mp is generated by the images in k[X]| of
the polynomials  — a and y — .

Let X = Z(f) be an irreducible projective curve, and let Y = Z(g) be the affine curve
obtained by dehomogenizing f. We have seen that k(X) = k(Y). If P € Y, the definition
of local ring then shows that Op(X) = Op(Y'). Therefore, the local ring at a point can be
determined from the previous proposition.

Example 2.14. The line X = Z(y) has function field k(¢). We determine the local rings
of points on X. Let P = (a,0) € X. Note that I'(X) = k[z,y|/(y) = k[t], and k(X)
is the quotient field of this ring. The isomorphism k(X) = k(t¢) sends the image of a
polynomial f(z,y) to f(¢,0). We claim that Op(X) = k[t|;_q), the localization of k[t] a
the maximal ideal (t —a). For, g(z,y)/h(x,y) € Op(X) if h(a 0) # 0. Therefore, h(t, 0) is
not divisible by t — a, and so g(t,0)/h(t,0) € k[t]q—q). The reverse inclusion is easy since
g(t,0)/h(t,0) € k[t]t—q) is defined at P since t — a does not divide h(t,0).

2.4 Nonsingular Curves

To have a complete correspondence between function fields and projective curves, we must
restrict to nonsingular curves. Suppose that f(x,y,z) is a homogeneous polynomial. It
defines a projective curve X in P2, and we refer to it as a plane curve. By recalling formulas
for tangent lines from calculus, we say that the curve X is nonsingular at a point P € X if
at least one of the three partial derivatives 0f/0x, df /Oy, or Of/0z do not vanish at P. If
X is nonsingular at every point P, then we say that X is a nonsingular curve. Similarly, an
affine curve g = 0 is nonsingular at a point P if dg/0z and dg/0y do not both vanish at P,
and the curve itself is nonsingular if it is nonsingular at all its points.

Example 2.15. The affine parabola y = 22 is nonsingular, for the partial derivatives of
y—x? are —2z and 1; neither vanish simultaneously. Similarly, Z(y — 23) and Z (2% +y* — 1)
are nonsingular. However, Z(y? — 2?) is singular at the origin.

Example 2.16. Consider the projective parabola yz = x2. The partial derivatives are —2x,
z, y; they only simultaneously vanish at (0,0,0), which does not represent a point in P2
Therefore, the parabola is nonsingular. However, the projective closure of the cubic curve
y=a31is X = Z(yz*> — x3). Here, the partial derivatives are —3x?, 22, 2yz, which vanishes
at (0:1:0) € X. Therefore, this curve has a singularity. Note that the singularity occurs
at the point at infinity.
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Example 2.17. The elliptic curve X = Z(y*z — 23+ x2?) is nonsingular if the characteristic
of k is not 2. To see this, the three partial derivatives of y?z — 2% + 222 are —322% + 22, 2yz,
and y? + 2xz. It is easy to see that all three partials vanish only at x = y = 2z = 0, and so
there is no point on X for which this happens. In fact, if y?> = f(z) is any elliptic curve,
where f(z) is a cubic polynomial with no repeated roots, then this curve is nonsingular. For,
a point P = (a,b) on the curve satisfies b> = f(a). The partials of y?> — f(x) are — f'(x) and
2y; for these to vanish at P, we must have b = 0 and f'(a) = 0. Then f(a) = f'(a) =0, and
this cannot happen since a would then be a multiple root of f(x).

Example 2.18. Any hyperelliptic curve is nonsingular, as long as the characteristic of the
base field is not 2. The argument of the previous example works word for word to prove that
a hyperelliptic curve is nonsingular.

By making use of some theorems from Math 582, we can now begin to give the connection
between function fields and curves. We first note that a commutative ring is said to have
dimension 1 if all nonzero prime ideals are maximal. It is not an obvious result, but the
coordinate ring of an affine curve has dimension 1. Also, the local ring at a point on any
curve also has dimension 1. The general result is that the geometric dimension of an affine
algebraic variety is equal to the ring theoretic dimension of its coordinate ring, and that
these are also equal to the transcendence degree over k of the function field k(X). Next,
if X is a curve, then Op(X) is a local Noetherian domain of dimension 1 for any P € X.
We have already remarked that its dimension is 1. It is Noetherian because the coordinate
ring of an affine curve is a quotient ring of k[z,y|. The coordinate ring is then Noetherian,
and since Op(X) is a localization of the coordinate ring, it is also Noetherian. We have
seen above that Op(X) is a local ring. Let A be a local domain with maximal ideal M, and
set ' = A/M, a field. Then A is a discrete valuation ring if and only if it is Noetherian,
dimension 1, and dimp(M/M?) = 1. Note that F = k for A = Op(X); this can be seen
indirectly in the proof below.

Theorem 2.19. Let X = Z(f) be an irreducible curve. Then P € X is nonsingular if and
only if Op(X) is a discrete valuation ring of k(X).

Proof. By the remarks above, it is enough to prove that P is nonsingular if and only if
dimy,(Mp/M3) = 1, where Mp is the maximal ideal of Op. Let M = (z —a,y — b), a
maximal ideal of k[x,y]. Define a map 6 : M — k? by

b(9) = (G2(P). 52P)).

We note that 6 yields a vector space isomorphism M/M? = k*. The polynomial f yields the
1-dimensional subspace V' = ((f) + M?) /M? of M/M?  and (V) has dimension 1 if and
only if P is nonsingular, and it has dimension 0 otherwise. Recall that k[X] = klz,y]/(f)
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and Op = k[X]n,, where mp = {g € k[X] : g(P) =0} = M/(f). Then

mp/mp = M/(f)/ (M*+(f)/) (f) = M/ (M + (f))

The maximal ideal Mp of Op is then mpOp, and so Mp/M3 = mp/m% by a Math 582
exercise. Thus,

Mp/Mp = wmp/m$p = M/((f) + M?) = (M/M?)) /V

by one of the homomorphism theorems of vector space theory. Therefore, Mp/M32 has
dimension 1 if and only if P is nonsingular. O]

Example 2.20. The curve X = Z(y*> — 2®) is singular at the origin. The coordinate ring
of X is k[t*,¢°], and so the local ring at the origin is k[t?,¢] 2 4s). This is a proper subring
of the discrete valuation ring k[t];). By another characterization of discrete valuation rings,
a local Noetherian domain of dimension 1 is a discrete valuation ring if and only if it is
integrally closed. The ring k[tQ,tia](tz’t?,) is not integrally closed since t is integral over it; ¢
satisfies the polynomial 7% — t*. However, ¢ ¢ k[t*, t%] ;2 3), which shows that this ring is not
integrally closed.

2.5 Curves over non-Algebraically Closed Fields

Classical algebraic geometry uses algebraically closed fields in order to have solutions to
polynomial equations. However, in several situations, including coding theory, we need to
work with arbitrary fields.

Let k be an arbitrary field, and let K be an algebraically closed extension field of k.
An affine curve over k is a curve Z(f) C A%(K) such that f(z,y) € k[z,y]. Similarly, a
projective curve over k is a curve Z(f) C P?(K) such that f(x,y,z) € k[z,y,2]. An affine
curve Z(f) over k is said to be absolutely irreducible if f(x,y) is irreducible in K[z,y]. An
analogous definition holds for projective curves.

If X = Z(f) is an affine curve over k, then its ideal over k is

I(X/k)=I1(X)Nklx,y] = {g9(z,y) € k[z,y] : g(P) =0 for all P € X}

and its k-coordinate ring is

D(X/k) = Ekl, y] [ T(X/E).

This is a subring of the coordinate ring I'(X). If X is absolutely irreducible, then the
function field K (X) exists, we define the k-function field k(X) to be the quotient field of
['(X/k). Therefore, we see that k(X) is the set of all quotients of polynomials g(z,y)/h(x,y),
where g/h = ¢'/I if gh' — g'h € fk[z,y]. We similarly can define the k-function field of
an irreducible projective curve. We also can define a k-version of the local ring of a point,
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which we also denote by Op(X/k). This is the ring

Op(X/k) ={¢ € k(X) : p(P) is defined}
= Op(X) Nk(X).

This notation does not show the dependence on k, but this will not give us a problem since
we will not consider this concept for two fields at a time.

The characterization of nonsingularity in terms of Op can be made relative to k as follows.
If X is a curve over k, then P € X is nonsingular if and only if Op(X/k) is a discrete valuation
ring. The proof of this is a moderately standard use of facts about discrete valuation rings,
and we won’t give it here.

A point P = (a,b) on a curve X is said to be a k-rational point if a,b € k. We write
X (k) for the set of all k-rational points of X. Thus, X = X(K). To simplify terminology,
we will often refer to a K-rational point as simply a point, and use the terminology rational
point to note a point whose coordinates are in k (or some other subfield of K). A curve over
k is nonsingular if it is nonsingular as a curve over K. That is, X is nonsingular if every
point P € A%(K) lying on X is nonsingular.

As we will see, a major problem in working with codes coming from algebraic geometry
is to find curves over F, with lots of rational points.

Example 2.21. Let n > 3 be an integer, and consider the projective curve z™ + y" = 2".
Fermat’s last theorem says that there are no Q-rational points of this curve having all nonzero
coordinates.

Example 2.22. The projective curve X = Z(z? + y? + z?) over R has no R-rational points.
However, it has lots of C-rational points, such as (1:0 : 7).

Example 2.23. The projective curve X = Z(22 + y?) over R is not absolutely irreducible
even though z? + y? is irreducible in R[z,y], since over C the polynomial 2% + y? factors as
(x +1iy)(z — iy). Therefore, the k-curve Z(f) need not be absolutely irreducible even if f is
irreducible over k.

Example 2.24. We will see near the end of the course that Weil’s proof of the Riemann
hypothesis for curves over a finite field F, yields a bound on the number of rational points.
This bound, which is in terms of the genus g of the curve and of the size ¢ of the base field,
says that the number N of rational points satisfies the inequality

IN = (¢+ D] <29v4.

We will define the genus in the first chapter of Stichtenoth; the proof of this bound is done
in Chapter 5. Let X be the curve over F,2 given by x4*! + y¢™! = 1. This is called the
Hermitian curve over Fp2. It turns out that the genus of this curve is ¢ = ¢(¢ — 1)/2, and
that N = 1 + ¢?, the largest possible given the bound above.
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3 Algebraic Function Fields and Discrete Valuation
Rings

Let F/k be a field extension. Then F' is said to be an algebraic function field in one variable
over k if there is an element x € F' that is transcendental over k and for which [F': k(x)] < co.
Recall that if x is transcendental over k, then the field k(x) is isomorphic to a rational function
field in one variable over k. We will not distinguish between transcendental elements and
variables from now on. These fields are precisely the function fields of algebraic curves
defined over k. We have indicated, without full proof, why the function field of a curve is
such a field. For the converse, if F is generated over k(x) by a single element y, then since
y is algebraic over k(x), there is an irreducible polynomial p(t) € k(z)[t] for which p(y) = 0.
By clearing denominators, we may view p(t) € k[z][t], and the equation p(y) = 0 yields an
equation f(z,y) = 0 with f a polynomial in two variables over k. Then F is the function
field of Z(f) C AZ.

We note one simple but important property of algebraic function fields in one variable,
which we state as a proposition.

Proposition 3.1. Let F/k be an algebraic function field in one variable. If t € F is tran-
scendental over k, then [F : k(t)] < oc.

Proof. There is an = € F transcendental over k and with [F': k(z)] < co. We will be done
by proving that x is algebraic over k(t), since then [k(t)(x) : k(t)] < oo, and then

[ = k(2) (2)][k(2) () - K(2)]
(2 k(2)][R() () : k(2)]

[F - k(1))

IA

is finite since both terms are finite. To show that x is algebraic over k(t), we know that ¢ is
algebraic over k(z). Therefore, there are f;(x) € k(z) with "+ f,,_1 ()" '+ -+ fo(z) = 0.
By writing each f;(z) as a quotient of polynomials and then clearing denominators, we have
an equation of the form a,(x)t" + a,_1(x)t" ' + - - + ap(z) = 0. Viewing this equation as a
polynomial in z with coefficients in k(t), we conclude that x is algebraic over k(t). O

This proposition could also be proved by using the notion of a transcendence basis. A
(finite) transcendence basis of a field extension K /k is a set {t1,...,t,} of elements of K such
that ¢; is transcendental over k, and t;, is transcendental over k(ti,...,t;) for each i>1,
and for which K is algebraic over k(ti,...,t,). The number of elements of a transcendence
basis is uniquely determined, and is called the transcendence degree of K /k. For an algebraic
function field in one variable F'/k, the transcendence degree is 1. If ¢ is transcendental over
k, then {t} is a transcendence basis for F'/k by the uniqueness of transcendence degree.
Therefore, every element of F' is algebraic over k(t), including the element = of the proof of
the proposition. Moreover, F' is finitely generated over k, so it is also finitely generated over
k(x); thus, as F is algebraic over k(z), we see that [F : k(z)] < oo.
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Let F/k be an algebraic function field in one variable. If &’ is the algebraic closure of k
in F, then k" is called the field of constants of F/k. Recall that k" is the set of all elements
of F' that are algebraic over k. We will see the reason for calling elements of k' constants
once we interpret elements of F' as functions. Now we prove that &’ is a finite dimensional
extension of k. This is a special case of a theorem from field theory says that if F//k is a

finitely generated field extension, then the algebraic closure of k in F' is a finite extension of
k.

Proposition 3.2. Let F//k be an algebraic function field in one variable. If k' is the field of
constants of F/k, then [k : k] < co.

Proof. Let x € F be transcendental over k. Then [F : k(z)] < oo by the previous result.
We claim that [k : k] < [F : k(z)]. Once we prove this, then we will have proved the
proposition. Let {t1,...,t,} C Kk’ be a linearly independent set over k. We claim it is also
linearly independent over k(x). For, if there is an equation ), ¢, fi(x) = 0 with f;(z) € k(z),
by clearing denominators, we may assume that fi(z) € k[z]. Write fi(z) = >_; a;;z? with
a;; € k. Then ), ;tia;;27 = 0, which we may write as Y (37, ai;t;) 2/ = 0. This would
show that x is algebraic over k' unless all coefficients are 0, a contradiction since k'/k is
algebraic and z is transcendental over k. So, ). a;t; = 0 for each j. Since a;; € k and
the ¢; are independent over k, each a;; = 0. This shows that each f;(x) = 0, and so the
claim that {ty,...,t,} is independent over k(z). Therefore, n < [F : k(x)]. This forces
[k k] < [F: k(x)], as desired. O

If f(z,y) € klz,y] is an absolutely irreducible polynomial and X = Z(f) is the corre-
sponding curve over k, then k is the field of constants of k(X)/k. We probably will not use
this result, and we will not prove it. A proof can be found in Section 22 of my book Field
and Galois Theory. That section studies function fields of affine algebraic varieties, not just
algebraic curves.

3.1 Discrete Valuation Rings

We note that the rational function field k(z) itself is the most simple example of an algebraic
function field. One special property for k(x) is that, since this field is the quotient field of the
unique factorization domain k[z|, every element ¢(x) of k(z) can be uniquely represented in

the form
p(z) = P1(2) - - pa ()™
ql (l')fl “ e qm<x)fm ’
where p;, ..., Pn, q1, - - - @ are distinct irreducible polynomials, n and m are positive integers,

and each exponent e; and f; is nonnegative. We note that we may need to use 0 exponents
to write an element in this form. The element ¢ defines a function to k£ whose domain is
a subset of k; we may talk of zeros and poles of ¢: a zero of ¢ is obviously an element a
with ¢(a) = 0. A pole of ¢ is an element b for which the denominator of ¢ is 0. Such an
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element is a point at which ¢ is not defined. If b is a pole, then the denominator of ¢ can
be written in the form (x — b)"o(x) for some polynomial ¢ for which b is not a root, and for
some integer > 1. We then see that, while ¢(x) is not defined at b, the rational function
(x —b)"p(x) is both defined and nonzero at b. We then define the order of the pole b to be 7.
Similarly, a zero a of ¢ has order s if p(x) = (x — a)*7(x), where 7(x) is a rational function
defined at a and for which 7(a) # 0.

The problem of Riemann is to determine, given points Py, ..., P,,Q1,...,Q,, of a curve
X and positive integers ey, ..., ey, f1, ..., fm, which functions ¢ € k(X)) have a zero at P; of
order at least e; and a pole at (; of order at most f;. While this problem is well defined for
curves whose function field is k(x), it is not well defined for other curves. One point of the
first chapter of Stichtenoth is to define what is a zero and a pole of a rational function on
a curve. For this we need to discuss in some detail the concept of a discrete valuation ring.
Before giving the definitions, we give two examples, one from number theory and the other
from algebraic geometry.

Example 3.3. Let p be a prime number. We can write every rational number in the form
p"%, where n € Z and where a and b are integers neither divisible by p. The exponent n
is uniquely determined, this is a consequence of unique factorization. We define a function
vy Q" — Z by vy(x) = nif x = p"¢, as above. We point out two properties of this function.
Let 2,y € Q. Then v,(zy) = v,(z) + v,(y). This follows from the laws of exponents and
from the definition of a prime, that implies that if u, v are not divisible by p, then neither is
uv. Second, if x 4+ y # 0, then v,(z +y) > min{v,(x), v,(y)}. To see why this is true, write
r=p"¢ and y = p™4. For sake of argument, suppose that n > m. Then

Thy=pty Ao = 0+ )
o [(P"TMad + be
-7 bd ‘

The denominator bc is not divisible by p since neither b nor c is divisible by p. The numerator
may or may not be divisible by p. Therefore, v,(z +y) > m = min{v,(z),v,(y)}. By using
the function v,, we can define a subring of Q by

O,={x Q" :v,(x) >0} U{0}

:{%:a,beZ,pr}.

Moreover, O, has an ideal M, defined by

M, ={z € Q" :v,(z) >0} U{0}

:{%:a,beZ,pm,p{b}.

Furthermore, every element of O, \ M, is a unit inO,, as such an element has the form ¢
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with both a, b not divisible by p. Then g € O, is the inverse of § in O,. Thus, O, is a local
ring with unique maximal ideal M,. This ring is sometimes called the p-adic valuation ring
of Q. The residue field O, /M, is isomorphic to F, via the map ¢ — @ (b)~".

Example 3.4. Let p(z) be an irreducible polynomial in k[z]. Every rational function in

k(z) can be written in the form p(z)"%% where a(z) and b(z) are polynomials neither

b(x)?
divisible by p(z). We define a function v, : k(x)* — Z by v,(¢(z)) = n if p(z) = p(x)”%
as above. With the same arguments as in the previous example, we see that v,(f(x)g(z)) =
vp(f(2)) +vp(g(2)) and vp(f(2) + g(x)) = min {v,(f()), vp(g(2))} for all f(x), g(x) € k(x)".

Also, we have a local ring

Op(a) = {p(2) € k(2)" - vp(p(2)) = 0} U{0}

l‘)'a.ﬂv xr x i X
1 ale). ) € i, plo) 0 |

)
—~

S

with unique maximal ideal

M, = {olz) € Mz)"  y(x) > 0} U0}
= a(I)‘al' X Xz x a\x i X
{553+ ale).ba) € Hia, pla) [ ato). plo) o)}

_\-1
Finally, we note that O,/M, = k[z]/(p(z)) via the map % — a(z) - <b(a:)> . This field
is a finite dimensional field extension of k; recall that, up to isomorphism, k[z]/(p(x)) is the
field extension of k obtained by adjoining to k a root of the polynomial p(z), so its dimension

over k is equal to the degree of p(x).

We now give definitions of a discrete valuation ring and a discrete valuation. These
definitions are equivalent, in some sense, as the previous examples indicate, although we
make this equivalence more precise below.

Definition 3.5. A discrete valuation ring of a field F' is a principal ideal domain R C F
such that for every a € F*, either a € R or a™! € R.

Definition 3.6. A discrete valuation on a field F is a nonzero functionv : F* — Z satisfying
the properties (i) v(ab) = v(a) + v(b) for all a,b € F* and (ii) v(a + b) > min{v(a),v(b)}
for all a,b € F* with a+b # 0.

A discrete valuation is then a group homomorphism from the multiplicative group of F*
to the additive group Z. Our assumption that v is nonzero means v is not identically equal
to 0. Since the image of v is a nonzero subgroup of Z, this image is nZ for some n > 1. By
replacing the function v by %’U, we assume that v is surjective. To connect these definitions,
first let v be a discrete valuation on a field F'. Set

O,={a€ F :v(a) >0} U{0}.
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The definition of a discrete valuation implies that O, is a subring of F. We call O, the
valuation ring of v. Furthermore, if M, is defined by

M,={a€ F*:v(a) >0} U{0},

then M, is an ideal of O,. Moreover, every element a of O, \ M, satisfies v(a) = 0, and
since this implies that v(a™') = 0, the element a is a unit of O,. This shows that M, is the
unique maximal ideal of O,. We claim that O, is a discrete valuation ring. One property
is easy to prove. Let a € F*. Since v is a homomorphism, v(a™!) = —wv(a). Therefore,
either v(a) > 0 or v(a™!) > 0; this implies that a € O, or a™' € O,. To finish the claim,
we need to show that O, is a principal ideal domain. Let I be a nonzero ideal of O,. Let
n =min{v(a):a € I,a # 0}, and pick a € I with v(a) = n. We claim that I = aO,. The
inclusion aO, C [ is clear. For the reverse inclusion, let z € I. Then v(z) > n by definition
of n. Then v(za™') > 0, so za™' € O,. Therefore, x € aQ,. Therefore, I C aO,, and so
I = a0, as desired. This finishes the proof that O, is a discrete valuation ring.

We now show that every discrete valuation ring of a field F' is the valuation ring of some
discrete valuation on F. Let R be a discrete valuation ring of F'. We first note that R is a
local ring with unique maximal ideal M = {r € R :r ¢ R*}, the set of nonunits of R. To
prove this it suffices to show that M is an ideal of R. It is clear that if xt € M and r € R,
then zr € M. It is also clear that if x € M, then —x € M. So, we are left to prove that if
x,y € M, then x4+y € M. It is enough to assume that both x and y are nonzero. Since R is
a discrete valuation ring, either zy~! € R or yx=! = (xy~1)~! € R. Suppose that zy~! € R.
Then x = yr for some r € R. Then z +y = yr +y = y(1 + r). This cannot be a unit since
it is a multiple of the nonunit y. Therefore, x 4+ y € M. Therefore, M is an ideal of R, and
so M is the unique maximal ideal of R.

We define a valuation v on F' as follows. First, for x € R with « # 0, set v(z) = n if
x € M™\ M. That is, v(z) = n if n is the maximum integer satisfying z € M™. We view
R = MY in this definition. To prove that v is well defined on R, we need to prove that there
is such a maximum integer for any nonzero x. This amounts to proving that ()~ , M™ = (0).
We do this in the following lemma.

Lemma 3.7. Let R be a local principal ideal domain. If M s the mazimal ideal of R, then
Nz M™ = (0).

Proof. Let J = (.~ M", an ideal of R. Since R is a principal ideal domain, there is an
a € R with J = aR. Write M = tR for some t € R. Then M™ = t"R. For each n there is an
rn € R with a = t"r,,. In particular, tr; = t"r, for each n. Since R is a domain, r; = t" " r,.
This shows that ry € J. If we write r; = as, then a = tr; = tas. If a # 0, then cancelling

a gives 1 = ts. This forces t € M to be a unit, which is false. Therefore, a = 0, and so
J=0. ]

We point out that this lemma is an easy special case of the Krull intersection theorem,
which states that if R is a local Noetherian ring with maximal ideal M, then (), M™ = (0).
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As we pointed out before the lemma, we now have a well defined function v : R\ {0} — Z
defined by v(z) = n if x € M™\ M™*'. Since R is a principal ideal domain, there is a
t € M with M = tR. Then M"™ = t"R. Therefore, each nonzero x € R can be written
uniquely in the form x = t"u for some unit v € R*. From this fact it is easy to prove
that v is a discrete valuation. First, if z,y € R, then x = t"u and y = t"w for some
nonnegative integers n, m and units u, w. Then zy = t"*"(uw). Since u and w are units,
the product ww is also a unit. Then v(zy) = n +m = v(x) + v(y). Second, suppose that
n > m. Then z 4+ y = t" (" "u + w). If we write t"™u 4+ w = t"s for some unit s, then
r+y=1t""s, and so v(z +y) = m+r >m = min{v(z),v(y)}. We extend v to F* by
defining v(a/b) = v(a) — v(b). This is well defined; if a/b = ¢/d, then ad = bc. Therefore,
v(ad) = v(be), or v(a)+v(d) = v(b) +v(c), so v(a) —v(b) = v(c) — v(d). We have prove that
v(zy) = v(x) + v(y) and v(x +y) > min{v(z),v(y)} for z,y € R. A short argument shows
that these properties hold for x,y € F™*, which will prove that v is a discrete valuation ring.

We point out some more properties of a discrete valuation ring of F'. First, we will show
that a discrete valuation ring O of F' is integrally closed in F. Recall that if R C S are
commutative rings, an element a € S is said to be integral over R if a satisfies an equation
of the form a™ + r,_ja" ' +--- 4+ ry = 0 with each 7; € R. That is, a is integral over R if a
satisfies a monic polynomial equation with coefficients in R. A ring R with quotient field F’
is said to be integrally closed if whenever a € F' is integral over R, then a € R.

Lemma 3.8. Let O be a discrete valuation ring of a field F'. Then O 1is integrally closed.

Proof. Let a € F be integral over O. Then there are r; € O with a”4+7,_1a" ' 4---+1ry = 0.
Let v be a valuation on F' whose valuation ring is @. Then from the equation —a" =
Tpo1a" ' 4 -+ + 1y, we have
= v(—a") > i a )l = i : ‘ :
nv(a) = v(—a") > o Juin {v(ra")} o Jin {v(ri) +iv(a)}

If this minimum occurs at i = j, then nv(a) > v(r;) + iv(a) > iv(a), since r; € O. Then
(n —i)v(a) > 0, which forces v(a) > 0. Thus, a € O, as desired. O

We will use the following lemma to help describe the discrete valuation rings of k(x)/k,
although it has other uses.

Lemma 3.9. Let O be a discrete valuation ring of F'. Then O is a mazimal subring of F'.
That is, if A is a ring with O C ACF, then A=0 or A=F.

Proof. Suppose that A is a ring with O C AC F. Let a € A\ O. Then a™! € O. Suppose
that ¢ is a uniformizer of ©. Then a=! € tO, so a=' = t"u for some unit v € O. So,
a = t7"u"'. Because O C A, we see that " lua = t~! € A. We use this to prove that
A = F. Let x € F be nonzero, and set m = v(z). Then t "™z € O. So, x = t™c for some
c € O. However, since t € O and t~! € A, both are in A, so t™ € A. Thus, x = t"c € A,
which proves that A = F. O
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We finish this section by discussing valuation rings of a field and of a subfield. Let K/F
be a finite dimensional extension of fields, and let O be a discrete valuation ring of K.
Suppose also that v is a discrete valuation of K whose valuation ring is O. It is immediate
to see that v|p is a valuation on F' once we see that v|p is not identically 0. If v|p is the 0
function, then F' C 0. Since K is algebraic over F, every element of Kwould be integral
over O, which would force K = O since O is integrally closed. This is false; thus, v|r is
nontrivial. The valuation ring of v|g is clearly "N O. We will use this in the following way.
Let F/k be an algebraic function field in one variable, and let € F' be transcendental over
k. Then F/k(z) is a finite extension. If O is a discrete valuation ring of F', then O Nk(x) is
a discrete valuation ring of k(x). We will be able use this idea once we know what are the
discrete valuation rings of k(z). We describe these rings in the next section.

3.2 Discrete Valuation Rings of k(z)/k

In this section we determine the discrete valuation rings of k(z)/k. Recall that we have
shown that if k is algebraically closed, then k(x) is the function field of the affine curve Z(y),
and that there is a 1-1 correspondence between points (a,0) on this curve and the discrete
valuation rings k[z],_q) of k(x). We generalize this example by allowing k to be arbitrary.
We will see more valuation rings, which correspond to non-rational points of Z(y).

Let O be a discrete valuation ring of k(x)/k. Then z € O or z7' € O. We first assume
that x € O. Then k[z] C O. Let P be the maximal ideal of O, and set M = P N k[z],
a prime ideal of k[z]. Then klz]yy C O since klz]\ M C O\ P and O \ P = O* is the
set of units of O. Since O # k(z), the ideal M is nonzero. Since nonzero prime ideals
of k[z] are maximal, we now know that M is maximal. Therefore, M = (p(x)) for some
irreducible polynomial p(x). We have seen that k[x]() is a discrete valuation ring of k().
Moreover, since k[z]p) € O and since discrete valuation rings are maximal subrings of
their quotient field, we have O = k[x](y()). This proves that any discrete valuation ring of
k(x)/k that contains x is of the form k[z]( (). Now suppose that ¢ O. Then z~! € O;
furthermore, x=! € P else z is a unit in O, and then x € O. We consider the ring k[z~!],
which is isomorphic to the polynomial ring k[x] via the map f(z™!) — f(x). Thus, we
may think of 27! as the variable of the polynomial ring k[z~!]. By the previous argument,
M = k[z7'] N P is a maximal ideal of k[x~!]. However, 7' € M, so (z7') C M. However,
! is clearly irreducible, so M = (z~!). Continuing to mimic the argument above, this
forces O = k[z™'](,-1). We have thus shown that the discrete valuation rings of k(z)/k are

{k[2) (o)) : p(x) € k[z] is irreducible} U {k[z~"]-1)} .

To make a geometric correspondence, if X = A'(K) with K an algebraic closure of k,
and if @ € K is a point of X, let p(z) be the minimal polynomial of a over k. Then p(x) is an
irreducible polynomial, and arguments similar to those we saw earlier show that Op(X/k) =
k2] (p(z))- Since every irreducible polynomial p(x) has a root in K, every valuation ring of
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the form k[x](,()) occurs as the local ring of a point of X. These account for all but one of
the discrete valuation rings of k(z)/k. If we consider the projective line P*(K), by viewing
A' C P! via a — (a : 1), then we have accounted for the local rings of all but one point,
the point (1 : 0). If we view A! inside P! in a different way, via a — (1 : a), then these
two copies have a great deal of overlap. If a # 0, then (a : 1) = (1 : a™'). Therefore, if
we interpret z € k(z) as the rational function for which z(a : 1) = a, then (1 : a™') = a.
Therefore, 7(1: a™') = a. Thus, x~! acts as the “variable” on the second affine piece. This
indicates that replacing the first affine line by the second should correspond to replacing x by
x~1. Since the valuation ring of (0 : 1) is k[z](,), by this symmetry argument, the valuation
ring of (1: 0) is k[z~'];—1). Therefore, by considering the projective line instead of the affine
line, we account for all discrete valuation rings of k(x)/k.

3.3 Discrete Valuation Rings of F/k

Let F'/k be an algebraic function field in one variable. A discrete valuation ring of F' that
contains k is said to be a discrete valuation ring of F'/k. If k is a finite field, then an exercise
shows that any discrete valuation ring of F' contains k. Therefore, in this case, any discrete
valuation ring of F' is also a discrete valuation ring of F'/k.

Lemma 3.10. Let O be a discrete valuation ring of F/k. If k' is the field of constants of
F/k, then k' C O.

Proof. Let a € F be algebraic over k. We wish to show that a € O. Since a is algebraic over
k, there are oy € k with a” + a,,_1a" ' + --- + ap = 0. Note that each o; € k. Thus, a is
integral over 0. Since O is integrally closed in F', we see that a € O, as desired. n

A place of F/k is a maximal ideal of a discrete valuation ring of F//k. Let P be the set
of all places of F'/k. This set takes the place of an algebraic curve; if k is algebraically closed,
then there is a 1-1 correspondence between points on a nonsingular projective curve X and
places of k(X)/k. To mimic the notation of algebraic curves, we typically denote places of
F/k by P, and we denote the valuation ring corresponding to the place P by Op. Since Op
is a discrete valuation ring, P = tOp for some t; such an element is called a uniformizer of
Op. Given a place P, the residue field of P is defined as

k(P) = Op/P.

Furthermore, we define the degree of P by deg(P) = [k(P) : k]. The field k is a subfield of
k(P), since k is a subring of Op, and kNP = (0). Thus, k = k/(0) embeds in Op/P = k(P).

Proposition 3.11. Let F/k be an algebraic function field in one variable, and let P € Pp.
If x € P, then deg(P) < [F : k()] < 0.

Lare in Op.

Thus, if x € P, then x is transcendental over k, so [F' : k(z)] < co. We are left to prove

Proof. First note that any element a € k' is a unit in Op since both a and a~
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that deg(P) < [F': k(z)]. Let ay,...,a, € Op such that their images ag, ..., a, in k(P) are
linearly independent over k. We claim that {ay,...,a,} is linearly independent over k(x).
Note that since z € P C Op, we have k[z] C Op. Furthermore, P N k[x] = (x) since € P
and (z) is a maximal ideal of k[z]. Thus, k[z],) € Op. Since k[z](y) is a discrete valuation
ring of k(x), we have Op N k(x) = k[z]w). The residue field of the valuation ring k[z](,
is k, since k[z] ) /xk[z]m) = k. Now, to prove our claim, suppose that there are ¢; € k(x)
with ), ¢;a; = 0. If v is the valuation on k(x) corresponding to the valuation ring k[x],),
by dividing through by the coefficient ¢; that has smallest value with respect to v, we may
assume that the ¢; are elements of the valuation ring k[z](,), and that at least one has value
0. Reducing modulo P, we have > .¢ - a; = 0. Now, ¢ lie not just in the residue field
k(P) = Op/P, but in fact the lie in the residue field & of k[z].). Therefore, this equation
is a linear dependence relation over k of the @;. Since {af,...,a,} is independent over k,
each ¢; = 0. However, one of the ¢; has value 0, so ¢; # 0. This contradiction shows that
{ai,...,a,} is linearly independent over k(z), as desired. O

Let f € F. We view f as a function on Py by defining f(P) = f € Op/P = k(P) if
f € Op. If f ¢ Op, then we do not define f(P). We call P a zero of f if f(P) = 0 and
P a pole of f if f(P) is not defined. Since f(P) = 0 if and only if f € P, and f(P) is not
defined if and only if f ¢ Op, if vp is the valuation of F' corresponding to Op, then P is a
zero of f if and only if vp(f) > 0 and P is a pole of f if and only if vp(f) < 0. If P is a
zero of f, then the positive integer vp(f) is called the order of the zero P. If P is a pole of
f, then the positive integer —vp(f) is called the order of the pole P. Note that P is a zero
of f if and only if P is a pole of f~1. We will prove that every nonconstant f € F has only
finitely many zeros and only finitely many poles. In fact, we will give much more detailed
information about the number of zeros and poles and their orders.

If F' = k(x), then these definitions of zero and pole are the same as we gave earlier, as is
the definitions of order. For, if ¢(x) = g(x)/h(z) is a rational function having a zero of order
r at a, then g(z) = (x —a)"g1(x) for some polynomial g;(x) with ¢g;(a) # 0. Also, we assume
that g(z)/h(x) is in reduced form, so h(a) # 0. If v is the valuation corresponding to the
discrete valuation ring k[z](;—q), then v(p(x)) = v(g(z)) —v(h(x)) = r, since  — a generates
the maximal ideal P of this valuation ring, and so ¢(z) € P"\ P"™!. The argument for poles
is similar.

We now show that every f € F has at least one zero and at least one pole, provided that
f is not a constant. We use a theorem from the handout on Dedekind domains: if K/F is
a finite extension, if A is a Dedekind domain of F, and if B is the integral closure of K,
then B is a Dedekind domain. Recall that a discrete valuation ring is a special example of
a Dedekind domain, being nothing more than a Dedekind domain that is also a local ring.

Proposition 3.12. Let x € F be nonconstant. Then x has at least one zero and at least
one pole.

Proof. Let © € F be nonconstant, and consider the finite extension F'/k(x). Let B be the
integral closure of k[z](,) in F'. Then B is a Dedekind domain of F'. If M is a maximal ideal
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of B, then By is a discrete valuation ring. Moreover, M N k[x](,) is a nonzero prime ideal of
k[z](z), so M NEk[z] ) = wk[x]s). Therefore, x € M. Thus, if we set By, = Op with P € Pp,
then x € P, as M = P N B. Therefore, P is a zero of x. By using the same argument with

x replaced by 27!, we see that 27! has a zero ). Then Q is a pole of z. O

Let F'/k be an algebraic function field in one variable, and let &’ be the field of constants.
For any P € Py, we have seen that k' C Op. The field £’ then embeds in the residue field
Op/P = k(P) via f — f+ P. Therefore, if f € k' is nonzero, vp(f) = 0 for all P. Therefore,
f(P)=f+ P € k(P) is equal to f under the embedding &' C Op. Thus, by viewing f as
a function on Pp, it is a constant function. This justifies our naming £’ to be the field of

constants.
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4 Divisors and the Riemann-Roch Theorem

In algebraic number theory the main ring of study is the ring of integers in an algebraic
number field F'. This is the integral closure A of Z in F'. The ring A is a Dedekind domain.
Associated to A is the group of fractional ideals, a group under multiplication (of ideals).
The principal ideals form a subgroup, and the resulting quotient group is called the ideal
class group of A. The study of this group has important consequences. For example, A is a
unique factorization domain if and only if the class group is 0. We start by discussing the
geometric analogue of this notion, which are divisors, principal divisors, and divisor classes.

4.1 Divisors of a Function Field

Let F'/k be an algebraic function field in one variable. By replacing k by the field of constants,
we will assume that & is the exact constant field of F'/k in this chapter. Recall notation we
used in the previous chapter: Pp is the set of places of F'//k. If P € Pp, then Op is the
corresponding discrete valuation ring and vp is the discrete valuation associated to Op.

Definition 4.1. Let F/k be an algebraic function field in one variable. A divisor is an
element of the free Abelian group on Pp. That is, a divisor is a finite sum Y npP, where
np € Z and P € Pp.

As part of this definition, two divisors ) ,npP and ) ,mpP are equal if and only if
np = mp for all P. In particular, ) ,npP =0 if and only if each np =0. If D =), npP
is a divisor, we define the support of D to be supp(D) = {P :np # 0}. This is a finite
subset of Pp. If P € Pp and D is a divisor, we set vp(D) to be the coefficient of P in D.
Then vp(D) = 0 for all but finitely many P. There is a partial ordering < on the set Dp
of divisors of F/k, given by D < E if vp(D) < vp(E) for all P € Pp. A divisor is said to
be positive if D > 0. Note that a divisor need not be positive or negative. For example, if
P, () € Pp, then the divisor P — () is neither positive or negative. The degree of a divisor is
defined as deg(D) = >, vp(D) deg(P). This is a finite sum since only finitely many vp(D)
are nonzero and since deg(P) is finite for any P. If D is a positive divisor, then deg(D) > 0.
Furthermore, if D < E| then deg(D) < deg(F).

Lemma 4.2. Let D and E be divisors on F/k. Then deg(D + E) = deg(D) + deg(FE) and
deg(—D) = —deg(D). Thus, the degree map is a group homomorphism from Dp to Z.

Proof. Let D =% ,npP and E =) ,mpP. Then D+ E =) ,(np + mp)P. Thus,

deg(D + E) = Z(np + mp)deg(P) = Z np deg(P) + Zmp deg(P)
= deg(D) + deg(E).

Also, deg(—D) = >, —npdeg(P) = — > pnpdeg(P), so deg(—D) = —deg(D). O
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Definition 4.3. Let f € F*. The divisor (f) of f is defined as (f) =>_pvp(f)P. The zero
divisor of fis (f)o = 22, .(p)=0 vP(f)P and the pole divisor is (f)eo = >_, (<o —vr([)P-

A divisor D is said to be principal if D = (f) for some f € F*. If f is a constant, then
vp(f) = 0 for all P, so (f) = 0. Note that (f) = (f)o — (f)eo- In order to see that the
definition above makes sense, we need to prove that any f € F™* has only finitely many zeros
and only finitely many poles. This result is perhaps the most important theorem leading up
to the Riemann-Roch theorem. The following lemma will allow us to use one of the results
in the Dedekind domain handout in proving this theorem.

Lemma 4.4. Let F/k be an algebraic function field in one variable, and let x € F be
transcendental over k. Let O be a discrete valuation ring of F'/k with mazimal ideal P such
that x € P. Then O Nk(x) = k[z] ).

Proof. Since € P C O, and since k C O by hypothesis, k[z] C O. Let M = PN klz], a
prime ideal of k[z]. We have x € M, so () C M. However, x is irreducible in k[x], so (z) is
a maximal ideal. Thus, M = (x). Furthermore, since k[z] \ (z) C O\ P = O%, the group of
units of O, we have k[z]) € O. Finally, as k[z](,) is a discrete valuation ring, k(x| = O
since discrete valuation rings are maximal subrings of their quotient fields. m

Theorem 4.5. Let x € F'\ k. Then deg((x)o) = deg ((¢)o) = [F : k(x)]. Therefore, x has
only finitely many zeros and only finitely many poles.

Proof. Let x € F' be nonconstant. Suppose that Py,..., P, are zeros of x. Thus, z € P,
for each 7. By the previous lemma, Op, contains k[x]). Conversely, if P is a point with
klz]@) € Op, then & € P, since Op N k[x]) = xk[z]). The zeros of  are then precisely
those P for which Op contains k[z];). We proved in the Dedekind domain handout that
there are only finitely many discrete valuation rings of I’ that contain the discrete valuation
ring k[z]). Therefore,  has only finitely many zeros. Moreover, if P; is a zero of order
e;, then vp () = e;. Let B be the integral closure of k[z]y in F. If M; = P, N B, then
xB = M-+ M, which was proved in the handout. Thus, by the handout, [F : k(z)] =
Y. eifi, where f; = [B/M; : k(] /zk[z]y)]. The field k[z]w)/xk[z]) is equal to k, and
B/M; = Op, /P, = k(P;). Thus, f; = deg(P;). Therefore, [F' : k(z)] = >, e;deg(P),
and since (x)o = >, e;P;, we have deg((x)o) = [F' : k(z)]. Finally, the pole divisor of

x is equal to the zero divisor of z=!'. Thus, this argument, applied to z~!, shows that

deg((2)o) = deg((x™)o) = [F: k(x)]. -
Corollary 4.6. Let f € F*. Then deg((f)) =0.

Proof. In the previous theorem we proved that deg((x)o) = deg((2)x). Since (z) = (z)o —
(2)s and the degree function preserves addition , deg((z)) = deg((x)o)) — deg((z)s)) =
0. [

Corollary 4.7. Let D be a divisor with deg(D) = 0. Then the following conditions are
equivalent.
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1. D 1s principal,
2. dim(D) > 1,
3. dim(D) = 1.

Proof. We have seen in an example that if D = (f) is principal, then L(D) = f~'k. There-
fore, dim(D) = 1. This proves (1) = (3). The proof of (3) = (2) is obvious. Finally,
for (2) = (1), suppose that dim(D) > 1. Take f € L(D) be nonzero. Then D + (f) > 0.
This is then a positive divisor of degree equal to deg(D) = 0 by Corollary 4.6. This forces
D+ (f)=0,s0 D=—(f)=(f"") is principal. O

By using principal divisors, we can define a new group. First, note that (f) + (¢) = (fg)
and —(f) = (f~1). Therefore, the set of principal divisors is a subgroup of Dg. The divisor
class group CF is defined to be the quotient group of Dr modulo the subgroup of principal
divisors. If D and E are divisors that have the same divisor class in Cr, then we say that
D and E are equivalent. In other words, D is equivalent to E if there is an f € F* with
D =FE+ (f). We will write D ~ E if D and E are equivalent.

Definition 4.8. Let D be a divisor on F/k. Then L(D) ={f € F*: D+ (f) >0} U{0}.

Example 4.9. If 0 is the trivial divisor, then L(0) = k. To see this, if f € L(0) is nonzero,
then (f)+0 >0, so (f) > 0. Therefore, vp(f) > 0 for all P € Pp. This forces f to have no
poles. Since any nonconstant function has a pole, f must be a constant. Conversely, if f is
a constant, then (f) =0, so (f) + 0 > 0. This proves the equality L(0) = k.

Example 4.10. Let D < 0 be a negative divisor. Then L(D) = 0. For, if f € L(D)
was nonzero, then D + (f) > 0. However, this would force deg(D + (f)) > 0. Since
deg(D + (f)) = deg(D) + deg((f)) = deg(D) < 0 by Corollary 4.6, this is impossible. Thus,

f=o.

Example 4.11. Let D = (f) be a principal divisor. We claim that L(D) = f~'k. First, it
is clear that f~'k C L(D) since if a is any constant, then (af~') + (f) = (f~) + (f) = 0.
Conversely, if g € L(D), then (g) + (f) > 0. Then (gf) is a positive divisor. This forces g f
to be a constant since any nonconstant function has a pole. So, gf = a for some a € k, and
sog=afte flk

Example 4.12. Let F' = k(x), and let P, correspond to the discrete valuation ring
klz~!];-1). We first note that if v, is the valuation that corresponds to this ring, then
Voo (f(z)) = — deg(f(z)) for any f(z) € k[z]. To see this, we have v, (z!) = 1 since z7*
is a generator of P,,. Therefore, v, (x) = —1 = —deg(x). For f(z) = a,a™ + -+ + ag
a polynomial of degree n, we can write f(z) = 2™(a, + ap_127 ' + -+ + apx™™). The sec-
ond term has value 0 since vy (a,) = 0 and all other terms have positive value. Thus,

Voo (f()) = Voo (27) = —n = — deg(f(x)).
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Let n be a positive integer, and consider the divisor nP,,. Then
L(nPyx) = {p(x) € k(z) : (p(z)) + nPx > 0}.

This means ¢(z) € L(nPy) if and only if vo(¢(x)) > —n and vp(e(x)) > 0 for all P # P..
If we write ¢(x) = f(x)/g(x) in reduced form, then for any irreducible factor p(x) of g(x), we
have v, (p(x)) < 0; since this is impossible, we see that g(x) = 1. Therefore, ¢(z) € k[z].
By our description of v, we then see that L(nPs) = {f(z) € k[z] : deg(f(x)) < n}. Thisis
a k-vector space with basis {1,z,..., 2"}, so its dimension is n + 1. Note that deg(P) = 1,
so deg(nPs) = n. In other words, we see that dimy(L(nPy)) = 1 + deg(nPs).

Example 4.13. Let F' = k(x), and let ay,...,a, € k. Consider P, ..., P, corresponding,
respectively, to the irreducible polynomials © — ay, ...,z — a,. We calculate L(D), where
D=e P+ +e,P,, given positive integers e;. Let p(z) € L(D). Then vp (p(x)) > —e;.
Write p(z) = f(x)/g(z) in reduced form; thus, f(z) and g(z) have no common term. Then
the poles of p(z) are the zeros of g(x), and so a; can be a zero of g(x) of order at most e;.
Note that a; need not actually be a pole of p(z). Since g(x) can have no zeros other than the
various a;, we see that g(z) = (v —a)® - - - (z — a,)®™ with 0 < d; < ¢; for each i. If we write
o(x) = f(z)/ ((x —a)™ - (x — a,)?™), then vp,(p(z)) > —e¢;, as desired. Furthermore, if
P is any other place other than P.,, then vp(p(x)) > 0 since the value of the denominator
is 0. We only need to consider P.,, whose valuation v, satisfies v (f(x)) = —deg(f(z)) for
any polynomial f(x). Therefore, voo(¢(2z)) = (D, d;) — deg(f). Thus,

L(D) = { f(z) flx) € k[z], 0 <d; <e;deg(f) < Zdl} :

(x — )™ - (z — ap)

In fact, one can give a slightly simpler description of L(D) as

(x —ay)er - (z — ay)

L(D) = { f() — f(x) € klz],deg(f(2)) < Zei}.

Therefore, L(D) is isomorphic to the space of all polynomials of degree < "7 | e; = deg(D).
This is a space of dimension 14+deg(D). It is not a coincidence that dimy(L(D)) = 1+deg(D).
We will see that this is a general fact for divisors of k(z)/k of positive degree.

We point out some simple properties about the spaces L(D).

Lemma 4.14. Let F'/k be an algebraic function field in one variable, and let D be a divisor
on F/k.

1. If f € F, then f € L(D) if and only if vp(f) > —vp(D) for all P € Pp.

2. The set L(D) is a k-subspace of F.
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3. The space L(D) is nonzero if and only if D is equivalent to a positive divisor.

4. If E is equivalent to D, then L(E) = L(D) as k-vector spaces.

Proof. (1) We have f € L(D) if and only if D + (f) > 0, if and only if vp(D) + vp(f) >0
for all P € P, and this occurs if and only if vp(f) > —vp(D) for all P € Pr. This proves
(1). For (2), let f,g € L(D). Then vp(f) > —vp(D) and vp(g) > —vp(D) for all P. By the
definition of a discrete valuation, vp(f+g¢) > min {vp(f),vp(g)}. Thus, vp(f+g) > —vp(D)
for all P, so f+ g € L(D). Also, if f € L(D) and a € k, then (af) = (a) + (f) = (f).
Therefore, D + (af) = D+ (f) > 0, so af € L(D). Thus, L(D) is a k-vector space. To
prove (3), recall that D is equivalent to D + (f) for any f € F*. If f € L(D) is nonzero,
then D + (f) > 0. This is a positive divisor equivalent to D. Conversely, if D is equivalent
to a positive divisor E, then F = D + (f) for some f € F*, and then f € L(D) since E > 0.
Thus, L(D) is nonzero. This proves (3). Finally, for (4), suppose that F is equivalent to D.
Then E = D + (f) for some f € F*. We define a map ¢ : L(D) — L(E) by p(x) = xf.
Then
E+(p(e) = B+ (af) = B+ () + (f) = D + (a).

Therefore, E + (p(z)) > 0 if and only if D + () > 0. Therefore, z € L(D) if and only if
o(x) € L(E). This shows that ¢ does map L(D) to L(E) and that ¢ is surjective. The map
@ is k-linear since p(x +vy) = (z +y)f = xf +yf = p(z) + ¢(y) for any z,y € L(D) and
plaz) = (ax)f = a(xf) = ap(z) for any a € k. Finally, ¢ is injective since if p(z) = 0, then
xf =0. Since f # 0 and F'is a field, = 0. Therefore, L(F) = L(D) as k-vector spaces. [

If D is a divisor, we set dim(D) = dimy(L(D)). We will show later that L(D) is a finite
dimensional k-vector space.

Corollary 4.15. Let F'/k be an algebraic function field in one variable.

1. Let D be a divisor with deg(D) < 0. Then dim(D) = 0.
2. If E and D are equivalent divisors, then deg(E) = deg(D) and dim(F) = dim(D).

Proof. Toprove (1), if f € L(D) is nonzero, then D+(f) > 0. Then deg(D+(f)) = deg(D) <
0, while deg(D + (f)) > 0 since D + (f) > 0. This is a contradiction. Show, L(D) = 0,
so dim(D) = 0. For (2), we proved in the lemma that if £ and D are equivalent, then
L(F) = L(D). Therefore, dim(F) = dim(D). We have already seen that deg(E) = deg(D)
since the degree of any principal divisor is 0, by Corollary 4.6. [

We now start to investigate the dimensions of divisors. The next lemma shows that the
quotient space L(FE)/L(D) is finite dimensional, if D < FE. This is the first step toward
showing that L(E) itself is finite dimensional.

Lemma 4.16. Let D and E be divisors with D < E. Then L(D) C L(E), and the quotient
vector space L(E)/L(D) satisfies dimy(L(E)/L(D)) < deg(E) — deg(D).
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Proof. We first suppose that £ = D+ P for some P € Pp. Then deg(E)—deg(D) = deg(P).
Choose t € F with vp(t) = vp(F). Note that vp(E) = vp(D) + 1. If f € L(E), then
vo(f) > —vo(E) for all Q. In particular, vp(f) > —vp(E) = —vp(t). Thus, vp(tf) > 0.
We define a map ¢ : L(E) — k(P) by o(f) = (tf)(P). This is well defined since tf € Op,
and so (tf)(P) = tf € Op/P = k(P) is defined. We show that ¢ is a k-linear map, its
kernel is L(D), and that it is surjective. This will prove that L(E)/L(D) is isomorphic to a
k-subspace of k(P) as k-vector spaces, and so

dimy,(L(E)/L(D)) < dimy (k(P)) = deg(P) = deg(E) — deg(D).

First, if f, g € L(E), then o(f +g) = (¢(f + 9))(P) = (¢tf +tg)(P) = (tf)(P) + (tg)(P), so
o(f+9) = o(f) + »(g). Next, if a € k, then p(af) = (taf)(P) = a(tf)(P) = ap(f). The
second to last equality holds because a is a constant function; so, (taf)(P) = a(P)(tf)(P) =
a(tf)(P). Alternatively, with the identification of k as a subfield of k(P) under the map
a +— @, we have (taf)(P) = taf = a@-tf = a@- p(f). Thus, ¢ is k-linear. Finally, to see
that ker(p) = L(D), if f € L(D), then vp(f) > —vp(D) = —vp(E) + 1. Thus, vp(f) >
—vp(E) = —vp(t), so vp(tf) > 0. Therefore, (tf)(P) = 0, so ¢(f) = 0. Conversely, if
f € L(E) with ¢(f) =0, then (¢tf)(P) = 0, so vp(tf) > 0. This yields vp(f) > —vp(t), or
vp(f) > 1 —wvp(t) =1 —wvp(F) = —vp(D). For any Q # P, we have vg(D) = vg(E), so
since vg(f) > —vg(E), we have vg(f) > —vg(D). All these inequalities say that f € L(D).
This finishes the proof in the case that £ = D + P.

In the general case, we may write ¥ = D + P, + --- + P,, with the P, not nec-
essarily distinct. Set D;, = D+ P+ ---+ P, so E = D,. By the previous para-
graph, dimg(L(D;41)/L(D;)) < deg(P;) for all i. By induction, if dimg(L(D;—1)/L(D)) <
deg(Py) + - - - + deg(P;—1), then

dimg(L(D;)/L(D)) = dimy(L(D;)/L(D;-1)) + dimy(L(D;-1)/L(D))
< deg(P1) + -+ +deg(Pi-1) + deg(F)
because

LD LD) = 5 P

and the dimension of a quotient is the difference of the dimensions of the terms. So, induction
shows that dim(L(E)/L(D)) <", deg(P;) = deg(E) — deg(D). O

12

If D is a divisor, we may write D = D, — D_, where D, is the sum of the terms in
D with positive coefficients and D_ is the negative of the sum of the terms with negative
coefficients. Then D, and D_ are both positive divisors. The following result shows that
the spaces L(D) are actually finite dimensional over k.

Proposition 4.17. Let E be a divisor. Then dim(E) < deg(E, ) + 1. Therefore, L(FE) is a
finite dimensional k-vector space.
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Proof. We have Ey — E = E_, a positive divisor, so £ < E,. Therefore, L(E) C L(E,).
It suffices to prove that dim(FE, ) < deg(E) + 1. Therefore, by replacing E by E., we may
assume that F is a positive divisor. By the previous lemma applied to £ and D = 0, we have
dimy(L(E)/L(0) < deg(E) — deg(0). However, L(0) = k, so dim(0) = 1. Also, deg(0) = 0.
Thus, dimg(L(E)) = dimy(L(E£)/L(0)) + 1 < deg(E) + 1, as desired. O

This result shows that, for a positive divisor F, we have dim(£) — deg(FE) < 1. In fact,
if D is any divisor with deg(D) > 0, the same inequality holds. For, if L(D) = 0, then
dim(D) — deg(D) = —deg(D) < 0. However, if f € L(D) is nonzero, then £ = D + (f) is
positive. Since dim(FE) = dim(D) and deg(F) = deg(D), the inequality dim(F)—deg(F) < 1
says that dim(D) —deg(D) < 1. Written another way, 0 < 14 deg(D) — dim(D). This gives
a lower bound for this expression. We will now show that there is an upper bound for this
expression, as D ranges over all divisors.

Lemma 4.18. There is a constant 7y, depending only on F/k, such that if E is any divisor
of F/k, then deg(E) — dim(E) < ~. In particular, 1 + deg(E) — dim(FE) is bounded above by
v+ 1 for any divisor E.

Proof. We give a technical looking argument to prove this lemma. Let x € F' be nonconstant,
and set B = (2)oo. If n = [F': k(x)], then Theorem 4.5 shows that deg(B) = n. Let uy, ..., u,
be a k(x)-basis for F. Let C be any positive divisor containing us, ..., u,. To see that such
a divisor exists, let {P,..., P} be a set of points containing all the poles of all the u;. For
each j, let e; > max{—vpj(ui) 1< < n} Then vp,(u;) > —e; for all i. Therefore, if
C= Zj e; P, then u; € L(C) for each i. We next claim that, for any positive integer [/, the
divisor (B + C satisfies dim(IB + C') > (I + 1)n. To see this, we note that z'u; € L(IB + C)
for all j and for all ¢ with 0 < i <. For, (z'uj) + B+ C = i(z) + (u;) + IB + C. Now,
(u;)+C > 0. Furthermore, i(2)+1B = i(x)o— (%) o + (7)o = i(2)o+ (I —7) (@) 0. Since (z)o
and (z)s are positive, and 0 < [ —4, the divisor i(x) + (B is positive, and so (z'u;) + 1B+ C
is positive. There are (I + 1)n elements in the set {a'u; : 0 <i <[, 1 <j <n}, and these
elements are k-linearly independent since x is transcendental over k and the u; are k(z)-
linearly independent. This proves our claim that dim(IB + C) > (I + 1)n. On the other
hand, Proposition 4.17 and Lemma 4.16 applied to £ = [B + C' and D = C shows that
dim(IB 4+ C) — dim(IB) < deg(C'). These two inequalities show that

(l+1n <dim(IB + C) < dim(IB) + deg(C).
Written another way, as deg(IB) =l deg(B) = In,
deg(IB) — dim(IB) <~
if v =mn — deg(C'). This holds for all positive integers [.

Let A be any divisor. Our final claim is that there are divisors A; and D such that
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A1 > A Ay~ D, and D < [B for some [. Given this claim, we have

deg(A) — dim(A) < deg(A;) — dim(A;)
= deg(D) — dim(D)
< deg(IB) — dim(IB)

where the first and third lines follow from Lemma 4.16, the second line holds since A; and D
are equivalent, and the final line comes from the inequality above. The only thing remaining
is then to prove the claim. Choose A; any divisor with A; > A. By Lemma 4.16, we have

dim({B — Ay) > dim(IB) — deg(A4)
> deg(IB) — 7 — deg(4y)
=nl—~y—deg(A;) >0

if [ is large enough, since n > 1. This finishes the proof of the lemma. O]

This lemma shows that max {deg(D) — dim(D)+ 1: D € Dp} exists. We define the
genus of F/k to be the integer ¢ = max{deg(D) —dim(D)+1: D € Dr}. By definition,
we have g > deg(0) — dim(0) 4 1. Since deg(0) = 0 and dim(0) = 1, we see that g > 0. The
definition (and existence) of g is usually stated as Riemann’s theorem.

Theorem 4.19 (Riemann’s Theorem). Let F/k be an algebraic function field in one
variable and let g be its genus.

1. If D is any divisor of F/k, then dim(D) > deg(D) + 1 — g.

2. There is a constant ¢, depending only on F'/k, such that if deg(D) > ¢, then dim(D) =
deg(D)+1—g.

Proof. The first statement is just the definition of g. To see the second, by the definition of
g, there is a divisor A with g = deg(A) — dim(A) 4+ 1. Let ¢ = deg(A) + g. If deg(D) > ¢,
then

dim(D — A) > deg(D — A)+1—g > deg(D) —deg(A)+1—g
=deg(D)+1—c>1.

Therefore, L(D — A) is nonzero. Let z € L(D — A) be nonzero. Set D' = D + (x). Then
D" > Asince (x) + D — A > 0. Then

deg(D) — dim(D) = deg(D’) — dim(D") > deg(A) — dim(A) = g — 1.

Therefore, dim(D) < deg(D) 4+ 1 — g. Since the reverse inequality holds by definition of g,
we have dim(D) = deg(D) +1 — g. O
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4.2 The Riemann-Roch Theorem

Riemann’s theorem is a very useful fact about divisors, but because it gives an inequality,
it does not always allow us to determine the dimension of a divisor. The Riemann-Roch
theorem is an improvement of this result.

Theorem 4.20 (Riemann-Roch). Let F/k be an algebraic function field in one variable.
If C is a canonical divisor of F/k, then for any divisor D, we have dim(D) = deg(D) + 1 —
g+ dim(C — D).

To save time and tedious details, we aren’t going to prove this theorem in class. However,
we will define what is a canonical divisor. To do this we discuss derivations and differen-
tials. We point out that Section 3 of Chapter 4 of Stichtenoth gives the relation between
differentials in the sense we will introduce with the differentials he defines in Chapter 1.
A differential of F/k is a F-linear combination of formal symbols df, with f € F. These
symbols satisfy the properties da = 0 if a € k, d(f + g) = df + dg, and d(fg) = gdf + fdg.
The F-vector space of differentials is denoted €p/,. We formally define Qp/; as the quo-
tient of the F-vector space with basis all symbols of the form df for f € F, modulo the
submodule generated by all elements of the form da for a € k, and all elements of the form
d(f + g) — df — dg, and all elements of the form d(fg) — gdf — fdg. For the rest of this
discussion, we assume that F' contains an element x € F' transcendental over k£ for which
F/k(z) is a separable extension. We state without proof that if k is a perfect field, then
such an element exists. In particular, if £ is a finite field, such an element exists. We need
to know that Qg is a 1-dimensional F-vector space. It is fairly easy to prove that its
dimension is at most 1 (and we do so below); to see that it is nonzero, we need a little more
information about Qr/;. First, we define a related notion. If M is an F-vector space, then a
k-derivation is a function D : F' — M is a k-linear function such that D(ab) = D(a)b+aD(b)
for all a,b € F. We point out the universal mapping property for Qg it D : ' — M is a
derivation, then there is a unique F-linear map ¢ : Qp/, — M such that D(z) = ¢(dz) for
all x € F. The proof of this fact is not hard, although we do not give it.

Proposition 4.21. With z as above, the F-vector space gy, is one-dimensional with basis
dx.

Proof. By assumption, F/k(z) is separable. Let t € F. If p(T) € k(x)[T] is the mlnlmal
polynomial of ¢ over k(x), then p(T') has no repeated roots. Let p(T') = > a;(z)T". Then
0=>3"",a;(x)t". Applying the defining rules for Qp/y, we see that d(a(z)) = o (x)dz, where
a'(z) is the derivative of a(x). Thus, we have

0= z": al(z)t'dx + (i ai(x)iti_1> dt = z”: a;(z)t'dx + p'(t)dt.

1=0 =0 1=0
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Since p(T') has no repeated roots, p'(t) # 0. Therefore, we may solve for dt, obtaining
40

Therefore, dt € Fdx. Since g, is spanned by dt for ¢ € F', this proves that Qp/, = Fdx.
To finish the proof, we need to show that €5/, is nonzero. To do this we produce a nonzero

derivation D : ' — F. We have the derivation - on k(z). The argument above actually
shows that % extends uniquely to a derivation on F. For, if t € F' and p(T) is its minimal

polynomial over k(z), then we define D by the formula

]

Let x be as above, and let w = fdx be a differential. We then define the divisor (w)
of the differential w as follows. We first assume that w = dx. Let P € Pp, and let ¢ be
a generator of the ideal P such that dt # 0. We point out that such a t exists. For, if
t is any generator of P, if dt # 0, then we are done. If dt = 0, write x = t"u for some
n € Z and unit u. Then dx = nt" 'udt + tdu = tdu since dt = 0. So, du # 0. Then
d(tu) = udt 4+ tdu = tdu # 0, and so tu is a generator of P whose differential is nonzero.
Write dx = fdt for some f € F. We write f = dx/dt. Then the coefficient of P in (dx)
is vp(dz/dt). In other words, if we write (dx) = ) pvp(dz)P, then vp(dz) = vp(dx/dt).
We note without proof that if f € Op, then df /dt € Op. From this fact it follows that the
definition of (dz) is well defined. For, if ¢’ is another generator of P, write ' = tu for some
unit u. Then dt'/dt = u+ tdu/dt € Op by the previous line. Similarly, dt/dt’ € Op. Since
dt'/dt and dt/dt' are inverses, each is a unit. Finally, dx/dt’ = dxz/dt - dt/dt’ differs from
dx/dt by the unit dt/dt’, so vp(dx/dt) = vp(dz/dt"). For a general differential w = fdz, we
set (w) = (f) + (dx). Therefore, any two differentials have equivalent divisors, so the class
of the divisor of a differential is uniquely determined. Any such divisor is called a canonical
divisor.

Example 4.22. Let F' = k(x). We compute a canonical divisor of F/k. We can use z
since F' is obviously separable over k(z). First, consider a point P that is the maximal ideal
of k[z](p(z)) for some irreducible polynomial p(z). Then p(z) is a generator of the maximal
ideal. We have dp(z) = p/(z)dx. Now, since p/(x) is not divisible by p(x), we see that
Up(z)(P'(x)) = 0. Thus, v, (dr) = 0. This handles all but one point. The remaining point
is P, the point at infinity. The element 27! is a generator of this maximal ideal. Since
do™! = —272dx and v (f) = —deg(f), we see that vy (dr) = —vs(272) = deg(z72) = —2.
Therefore, the canonical divisor (dx) is —2P,. Since we see that deg(—2P,) = —2 and its
degree is 2g — 2, as we will see in the next corollary, this yields g = 0. We will give another

proof of this in the next section.
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We give some elementary consequences of the Riemann-Roch theorem.

Corollary 4.23. Let C be a canonical divisor of F'/k. Then deg(C) = 2g —2 and dim(C') =
g.

Proof. The Riemann-Roch theorem applied to D = 0 yields 1 =1 — g 4+ dim(C'). Therefore,
dim(C') = g. Next, applying the theorem to D = C' yields dim(C) = deg(C)+1—g+dim(0),
or g = deg(C) + 1 — g + dim(0), which then gives deg(C) = 2¢g — 2. O

These formulas for the degree and the dimension uniquely determine the divisor class of
C, as the next corollary shows.

Corollary 4.24. A divisor D is a canonical divisor if and only if deg(D) = 2g — 2 and
dim(D) > g.

Proof. Let D be a divisor with deg(D) = 2¢g —2 and dim(D) > g. If C'is a canonical divisor,
we need to show that D ~ C. By the Riemann-Roch theorem, dim(D) = deg(D) + 1 — g+
dim(C' — D). Since dim(D) > g and deg(D) = 2g—2, we get g < 2g—2+1—g+dim(C' — D),
or 1 < dim(C — D). Since deg(C — D) = deg(C) — deg(D) = 0, Corollary 4.7 shows that
C — D is principal. Thus, D ~ C. Note that this forces dim(D) = g. O

We can improve on the second statement of Riemann’s theorem.
Corollary 4.25. If D is a dwisor with deg(D) > 2g — 2, then dim(D) = deg(D) +1 — g.

Proof. Suppose that deg(D) > 2g — 2. Then deg(C' — D) < 0, so dim(C' — D) = 0. The
corollary then follows from the Riemann-Roch theorem. O]

We will not say very much about how one can find the genus of a function field; in fact,
it is difficult in general to calculate the genus. We do state without proof one fact: If F/k
is the function field of the affine curve Z(f(z,y)) for some polynomial f(z,y) € k[z,y] of
degree d. Then the genus g of F/k satisfies g < 3(d — 1)(d — 2), and equality holds if the
projective version of this affine curve is nonsingular. We will use this below to show that the
function field of an elliptic curve has genus 1.

4.3 Fields of Genus 0 and 1

In this section we classify fields of genus 0 and 1. We first consider genus 0. To start,
let us see a second argument for why the genus of the rational function field k(z)/k is
0. Let P = P, a point of degree 1. The valuation vp corresponding to Op is given by
vp(p(x)) = —deg(p(x)). If D =nP, then by Riemann’s theorem, if n is large enough, then
dim(D) = deg(D) + 1 — g. Since deg(D) = n, it is enough to calculate L(D). As we saw in
an earlier example, the space L(D) is the set of all f € k[z] with deg(f(z)) < n, which has
dimension n + 1. Then g = deg(D) — dim(D) + 1 = 0. Note that P, is a rational point of

k(z) k.

45



For a partial converse, suppose that F'/k has genus 0. Recall that we are assuming that
k is the exact field of constants. Moreover, suppose that there is a rational point P € Pp.
That is, suppose that deg(P) = 1. By Riemann’s theorem, dim(P) > deg(P) + 1 = 2. Let
x € L(P) be nonconstant. Then x exists since the set of constants has dimension 1 and
dim(L(P)) > 2. Because z € L(P), we have vp(z) > —vp(P) = —1 and vg(z) > 0 for all
Q # P. As the nonconstant x must have a pole, we see that vp(x) = —1. Then 27! € P.
By Theorem 4.5, [F' : k(z)] = deg(z)w. However, since P is the only pole of z, and since
vp(z) = —1, the pole divisor (z)s = P. So, deg(z)s = deg(P) = 1, which shows that
[F: k(z)] = 1. Therefore, F' = k(z), so F' is a rational function field in one variable over k.

The assumption that F' has a rational point is necessary. Let £ = R and let F' be the
function field of the curve z2 + y> +1 = 0 over k. Then F = k(x)(v/—1 — 22). It can be
proven that F'/k has genus 0 but that F' has no rational point. Thus, F' is not isomorphic
to a rational function field in one variable over k. However, if £ = C, then the genus of F'/k
is also 0, but any point is a rational point, so k(x)(y/—1 — 2?) is isomorphic to a rational
function field in one variable. In particular, an exercise will show that F' is generated over k
by (i —x)' V=1 —2a2.

We now consider fields of genus 1. We restrict to the case char(k) # 2. We will show
that a function field F'/k with a rational point has genus 1 if and only if F' = k(z)(y) for
some y € F with y*> = f(x) for some cubic polynomial f(z) with no repeated roots in k.
This means that such a field is precisely the function field of an elliptic curve. First, suppose
that F' = k(x,y), where z is transcendental over k, and with y? = f(z) for some cubic
f(z) with no repeated roots. We first show that F'/k has a rational point P. Consider the
extension F/k(x), a quadratic extension. Let P be any point for which Op extends the
valuation ring k[z~'],-1) of k(). Let e be the ramification index and f the residue degree.
Since the residue field of k[z™'],-1) is k, we see that f = deg(P). Thus, to show that P is
a rational point, we need to show that f = 1. Recall from the Dedekind domain handout
that ef < [F : k(x)] = 2. Thus, if we prove that e = 2, then f = 1 is forced upon us.
To see this, let vp be the valuation corresponding to Op. Then v|yy) = €V, Where vgg
is the valuation on k(z) corresponding to k[z™!]-1). Since vs(p(z)) = —deg(p(x)), and
y?> = f(x), we have vy (f(x)) = —3. So, 2v(y) = v(y?) = —3e. For v(y) € Z, this forces
e = 2, as desired. To see that he genus is 1, let g(z,y) = y*> — f(z). Then g is a polynomial
of degree 3. Its homogenization is y*z — 23 f(x/z). We have stated that the corresponding
projective variety is nonsingular since f(z) has no repeated roots. Therefore, by the genus
formula given earlier, g = $(3—1)(3—2) = 1. Alternatively, we could compute the genus by
computing the degree of a canonical divisor (dx). If we do so, we would see that deg(dz) = 0.
Since this degree is 2g — 2, we obtain g = 1.

Now suppose that F'/k has genus 1 and that F'/k has a rational point P. We produce
z,y € F such that z is transcendental over k and y?> = f(z) for some cubic f(x) with
no repeated roots in k. By the Riemann-Roch theorem, if deg(D) > 2g — 2 = 0, then
dim(D) = deg(D) + 1 — g = deg(D). Therefore, dim(nP) = n if n > 0. Furthermore,
L(nP) C L((n+1)P) since (n+ 1)P > nP. There are then elements = € L(2P)\ L(P) and
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y € L(3P)\ L(2P). So, for all @ # P, we have vg(z) > 0 and vg(y) > 0, while at P we
have vp(x) = —2 and vp(y) = —3. The element x is transcendental over k since it is not
constant (as vp(z) # 0). Since P is the only pole of x or y, we see that (z),, = 2P and
(¥)oo = 3P. From Theorem 4.5, this implies that [F' : k(z)] = 2 and [F' : k(y)] = 3. So,
F/k(z) and F/k(y) have no intermediate fields, since these degrees are prime. Therefore,
F = k(x,y). We wish to show that y satisfies a cubic over k(z). To see this, note that the
seven elements 1, z, 2%, 23, y, zy,y? all lie in L(6P). Since dim(6P) = 6, these elements are
linearly dependent over k. There are constants with ay?+ bxy + cy + da® + ex?* + hx +j = 0.
At least one of a, b, ¢ is nonzero since x is transcendental over k. From this it follows that
a # 0 else y € k(z), which is not true. By dividing by a, we may assume that a = 1.
Similarly, d # 0 else x satisfies a quadratic over k(y), which is impossible since F' = k(y)(z)
and [F : k(y)] = 3. By completing the square, we have (y + 3(bz + ¢))® — f(z) = 0, where
f(zx) is a cubic in z. Finally, if we replace y by y + %(bx +¢), then F is still equal to k(z,y),
and y? = f(z). It remains to show that f(z) has no repeated roots. If, instead, we can write
f(z) = alz — B)*(z — ) for some a, 3,7 € k, then (y/(z — B))> = a(z — 7). Replacing y
by y/(x — 3), we still have that x,y generate F' over k. However, since y> = a(x — ), we
see that « € k(y). Therefore, F' = k(y), and so F' is a rational function field in one variable
over k. However, this would yield g = 0, while we are assuming that ¢ = 1. Thus, f(x) has
no repeated roots in k.
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5 Goppa Codes

We now put the Riemann-Roch theorem to work to define a class of codes. These codes
were discovered by Goppa in 1981. Let F'/F, be an algebraic function field in one variable.
We assume that F, is the exact constant field. We denote the genus of F/F, by g. Let
Py, ..., P, be rational points in Pr. Recall that P is a rational point if deg(P) = 1. Thus,
the residue field of a point is I, if and only if the point is a rational point. Consider the
divisor D = P, +---+4 P,, and let G be a divisor whose support is disjoint from {P, ..., P,}.
Define an evaluation function evp : L(G) — Fp by evp(f) = (f(FP1), ..., f(P)). To see that
this is well defined, if f € L(G), then vp(f) > 0 since P; is not in the support of G.
Therefore, f(P;) is defined and is an element of F, = F,(F;) for each i. It is easy to see that
evp is Fg-linear. For addition, we have

evp(f+9) = ((f+9)(P),....(f +9)(F%))

= (f(P)+g(P),..., f(P)+g(Py)

= (f(P),.... [(P )) (9(Pr), ..., 9(F))
evp(f) + eVD(Q)'

If a € Fy, then

evp(af) = ((af)(P1),. .., (af)(Fn))
= (a(P)f(P),...,a(P)f(FPn))
= (af(P1),. .-, ( n)) = aevp o(f)

since a is a constant function. The image of evp is then a [F,-subspace of Fy.

Definition 5.1. With notation as above, the Goppa code Cr(D,G) is the image of evp.
That is, CL(D,G) = {(f(P1),..., [(P.)) : f € L(G)}.

From basic facts about divisors, we can determine the parameters of a Goppa code.

Theorem 5.2. The parameters of the Goppa code Cr(D,G) has length n = deg(D), dimen-
sion k = dim(G) — dim(G — D), and distance d > n — deg(G).

Proof. The length of the code is the number n of rational points P,..., P,. Since D =
>+, P, and each P; has degree 1, we see that n = deg(D). To determine the dimension,
since evp is linear, we see that k = dim(L(G)) — dim(ker(evp)). We show that ker(evp) =
L(G — D). Let f € ker(evp). Then f(P;) = 0 for all i. Then vp,(f) > 1, so vp,(f) >
—vp,(G — D) = 1. If @ is any other point, then vg(f) > —vo(G) = —vo(G — D) since
f € L(G). Therefore, we see that f € L(G— D). Conversely, if f € L(G—D), then f € L(G)
since G—D < G, and f(P;) = 0 for all i since vp,(f) > —vp, (G—D) = 1. Thus, f € ker(evp).
We have then shown that ker(evp) = L(G — D), and so k = dim(L(G) — dim(L(G — D)) =
dim(G) — dim(G — D). Finally, let evp(f) € CL(D,G) have weight d. Then n — d of the
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coordinates of evp(f) are zero. If these zeros are at the points P, ..., P, _,, then we see that
feL(G—P,—---—PF, ). This space is then nonzero, so the degree of G—P;, —---— P, |

is nonnegative. In other words, deg(G) — (n —d) > 0, so d > n — deg(G), as desired. O

The Riemann-Roch theorem will give us more information about the parameters of this
code.

Corollary 5.3. Suppose that deg(G) < n. Then evp is injective, and so k = dim(QG)
deg(G) +1—g and d > n — deg(G). Furthermore, if n > deg(G) > 2g — 2, then k
deg(G) +1—g.

v

Proof. We are claiming nothing new about d. If deg(G) < n, then deg(G — D) < 0, so
L(G— D) = 0. Thus, ker(evp) = 0, so evp is injective. This implies that & = dim(G). From
Riemann’s theorem, we have dim(G) > deg(G) + 1 — g, which yields k£ > deg(G) +1 — g.
Finally, if n > deg(G) > 2g — 2, then the Riemann-Roch theorem yields dim(G) = deg(G) +
1—g,s0=deg(G)+1—g. O

As an immediate consequence, if 2g —2 < deg(G) < n, then k+d > n+1—g. Therefore,
it F =TF,(x) is a rational function field over F,, then ¢ = 0, and so k+d > n + 1. However,
the Singleton bound says that k£ +d < n + 1. Therefore, k +d = n + 1. In other words,
Goppa codes associated to F,(z)/F, are MDS codes; that is, codes that attain the Singleton
bound. The only problem with this is that there are only ¢ + 1 rational points of F,(x)/Fy;
these are the points corresponding to the discrete valuation rings k[x];—q) for a € Fy along
with k:[a:‘l}(fg. So, if ¢ = 2, we can only build Goppa codes of length at most 3 if we use
F =Ty(x).

Proposition 5.4. Suppose that deg(G) < n. If {x1,...,xx} is a basis for L(G), then

1'1(P1> ZL’l(PQ) l'l(Pn>
ZL‘Q(Pl) $2(P2) xg(Pn)
(P (P - (P

is a generator matriz for Cr(D,G).

Proof. Recall that a generator matrix for a code is a k£ x n matrix whose rows form a basis for
the code. Since deg(G) < n, the map evp : L(G) — Fy is injective. Therefore, if {x1,..., x4}
is a basis for L(G), then {evp(z1),...,evp(z,)} is a basis for the image of evp, which is
CL(D,G). The i-th row of the matrix above is simply the vector evp(x;), so the matrix is
indeed a generator matrix for the Goppa code. O

Definition 5.5. The integer d* = n — deg(G) is called the designated distance of the code
Cr(D,G). It is a lower bound for the actual distance of the code.
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5.1 Goppa Codes coming from F,(z)/F,

In this section we will relate BCH codes and Reed Solomon codes to Goppa codes. We will
see that such codes arise from Goppa codes associated to the function field F,(z). First note
that there are ¢ + 1 rational points of F,(z)/F,; these correspond to the discrete valuation
rings Fy[z](,—q) for a € Fy and to Fy[z~!],-1). Therefore, any Goppa code constructed from
this function field is limited to have its length n satisfy n < ¢+ 1 . In particular, if we work
with Fy, we can have codes of length at most 3. To avoid repeatedly making reference to
the function field F,(z)/F,, we call a Goppa code a rational Goppa code if it is associated to
Fy(z)/F,.

Recall our standard notation for the parameters of a code; n is the length of the code,
k is the dimension of the code, and d is the distance of the code. We note what are the
parameters of a rational Goppa code in terms of the degree of GG in the next proposition.

Proposition 5.6. Let C (D, G) be a rational Goppa code with parametersn, k, and d. Then
k =0 if and only if deg(G) < 0, and k = n if and only if deg(G) > n — 2. Furthermore, if
0 < deg(G) <n—2, then k =1+ deg(G) and d = n — deg(G). In particular, Cr(D,G) is
an MDS code.

Proof. If deg(G) < 0, then L(G) = 0,50 C(D,G) = 0. If deg(G) > n—2, then deg(G—D) >
—2 = 2g — 2, where g = 0 is the genus of F,(x)/F,. Thus, by the Riemann-Roch theorem,

dim(G — D) =deg(G — D) +1—g =deg(G— D)+ 1 =deg(G) —n+ 1.

Since k = dim(G) — dim(G — D), and dim(G) = deg(G) + 1 — g, also by Riemann-Roch,
we see that k = deg(G) + 1 — (deg(G) —n+1) = n. Finally, if 0 < deg(G) < n — 2,
then dim(G — D) = 0 since deg(G — D) < —2 < 0. Thus, k£ = dim(G) = deg(G) + 1 by
Riemann-Roch. Also, d > n — deg(G). Since k +d < n + 1 by the Singleton bound, this
forces d = n — deg(G). The code is then an MDS code since the Singleton bound is met. []

Recall the definition of a Reed-Solomon code over F,. Let n = ¢ — 1, and let a be a
primitive element of F,. We identify the vector space Fy with the vector space of polynomials
of degree less than n under the association (ag, ..., @, 1) — ag + -+ + a,_12" 1. The code
consisting of all polynomials p(z) of degree less than n with p(a) = p(a?) = -+ = p(a?™1) =0
is a Reed-Solomon code of dimension n + 1 — d. As we will see, this is (almost) a special
example of a Goppa code. In fact, we look at a larger class of codes, which are called
generalized Reed-Solomon codes. To motivate the definition, we look at the original definition
of Reed and Solomon, which is different than the definition we gave. Set n = ¢, and let « be
a primitive element of F,. Set o; = a' for 0 <i < ¢q—2, and set a1 = 0. Pick an integer
k < n and let L be the vector space of polynomials in F,[z] of degree less than k. Then the
code

C =A{(flao), -, flog-1)): f € L}
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is the type originally defined by Reed and Solomon. This is a code of length n = ¢ and
dimension k; we note that the linear transformation f +— (f(ao),..., f(ag—1)) is injective
since k < n and a nonzero polynomial of degree < k cannot have n roots. Thus, dim(C) =
dim(L) = k. Moreover, given any nonzero f, since f has at most k—1 roots, at least n—k+1
of the components of the vector (f(ay), ..., f(c4—1)) are nonzero. This says d > n —k + 1.
The Singleton bound shows that d = n—k+1, and so this code is an MDS code. To generalize
this definition, let v = (vy,...,v,) € F} have all nonzero entries, let a = (az, ..., a,) have
distinct components in F,, and consider the code

GRSi(a,v) = {(v1f(a1),...,vnf(a) s f € L}.

This is called a generalized Reed-Solomon code. If 1 = (1,...,1) and o = (v, ..., q4—1) as
above, then this Reed-Solomon code is the code originally defined by Reed and Solomon. To
see the connection between these codes and the Reed-Solomon codes we defined earlier, we
first define the extended code C of a code C. This is the code

n+1
=1

Ql

If H is a parity check matrix for C, then the matrix whose top left part is H, whose bottom
row has every entry 1, and whose last column has all 0 entries except for the bottom is a
parity check matrix for C. The code C has length 1 more than the length of C, but whose
dimension is the same as the dimension of C'. The distance of C is either equal to the distance
d of C or to d+ 1, depending on whether or not every word in C' of weight d has the sum of
its coefficients different than 0. We will now show that an extended Reed-Solomon code is a
generalized Reed-Solomon code. Let a = (ay, ..., aq—1) with the «; defined as above. First
note that since every element of I, is a root of 29 — x, every nonzero element is a root of
29— 1= (x—1)(29 2 +-- -+ +1). Thus, if c € F,, then 372 ¢/ = 0if ¢ # 0, 1. Now, let
flz) = E;:é a;z?, and set ¢; = f(a') = f(ay) for 0<i<q—2. If1<1<q—Fk—1, then

q—2 q—2 [k—-1 k—1 q—2 k—1
ety =3 (Z “J‘W)J> (@) =D ) () =3 a;-0=0
i=0 i=0 \j=0 j=0  i=0 j=0

since 3.7"2(a!*9)" = 0 by the comment above since 1 < [ 4 j < ¢ — 2. Therefore, tak-
ing the Reed-Solomon code for d = ¢ — k, we see that Zf:_g c;x' lies in this code. Un-
der the correspondence between polynomials and n-tuples, this polynomial corresponds to
(cos. -y cq—2) = (f(ap), ..., flag_2)). So, given (co, ..., c,—1) € GRS(1, @), there is a unique
f(x) of degree < n such that f(a;) = ¢;, and then (¢, ...,c,—2) lies in the Reed-Solomon
code of dimension k£ and distance ¢ — k. A similar calculation to that above shows that
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-1 .
Y i, ci =0, since

q—1 q—1 q—2 q—2 k-1
=Y flag) = f0)+ fla') = a;(a'y
i=0 i=0 i=0 =0 j=0

Thus, GRSk(1, o) is the extended code corresponding to the Reed-Solomon code for d = ¢—k.
We now show that any generalized Reed-Solomon code is a rational Goppa code.

Proposition 5.7. Every generalized Reed-Solomon code is a rational Goppa code.

Proof. Let G = nP,, and let P; be the point corresponding to Fy[z]y—a,). Set D = P +
-+ P,. Then L(G) = {f € F,[z] : deg(f) < k}, and so

Cr(G, D) = {(f(P),..., [(Pa)) : f € L(G)}
={(flen),.... flewm)) : f € L}

is the generalized Reed-Solomon code GRSg(1, ). To deal with a general v = (vy,...,vy,),
find g € Flz] with g(P;) = v; for each i. (This is possible to do with a polynomial of degree
n — 1; finding such a polynomial amounts to solving an appropriate system of n equation
and n unknowns.) Consider now G = nP,, — (g). The support of G is disjoint from that of
D, since each v; is nonzero, so no P; is a zero (or pole) of g. Moreover, L(G) = gL(nPx).
Thus, if f € L(nPx), then gf € L(G), and so

evp(gf) = ((9f)(Pr), ..., (gf)(Pn)) = (g(P)f(Pr), ..., g(Po) f(Pn))
= (Ulf(P1>7 te 7Unf(Pn))7

which shows that Cf(G, D) = GRS (v, a). O

We now look at the connection between BCH codes and rational Goppa codes. Recall
the definition of a BCH code. We set n = ¢ — 1 and let o be a primitive element of Fym.
We choose a positive integer e < n, and we consider the code of all polynomials p(z) € F,|x]
of degree < n with p(a) = --- = p(a®~!) = 0. The resulting code has designated distance
e, which is a lower bound for the actual distance d. A Reed-Solomon code is nothing but a
BCH code when m = 1.

To connect these codes to Goppa codes, we need to relate codes over F, to codes over
Fm.

q

Definition 5.8. Let C' be a code of length n over Fgm. Then Clr, := C Ny is called a
subfield subcode of C, or the restriction of C to F,.
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In other words, C|r, consists of all codewords (ci,...,c,) € C such that each ¢; € F,.
Assuming that Cl|g, is not the trivial code, its minimum distance is at least that of C', and
its length is n. Moreover, dimg, (Clr,) < dimg,,, (C); to see this, suppose that ay, ..., a, is
an [F-basis for Fym. Take vy,...,v. € Clp, that are linearly independent over F,. If there
are a; € Fym with ). a;v; =0, write a; = Zj z;;a; for some x; € Fy. We then have

0= an =3 (Z xijaj) s = ;aj <Z ) |

i

By looking at each component of v;, which is an element of F;, we see that since {a1, ..., @}
is an F,-basis of Fym, we have ) x;;v; = 0 for each j. However, the F;-independence of
the v; implies that each z;; = 0, and so each a; = 0. Thus, an F,-basis of C\Fq is an
F,m-independent set in C, which yields the result about dimensions. It is possible that
dimy, (Clr,) < dimg,, (C); for example, if C' is a I-dimensional code generated by a vector
(c1,...,¢n), where ¢1/co ¢ Fy, then for no a € Fym do we have ac; € F, and ac, € F,.
Therefore, Clg, = 0.

Proposition 5.9. Fvery extended BCH code is a subfield subcode for some rational Goppa
code.

Proof. Let n = ¢™ — 1, and let a be a primitive element of Fym. Let

C = {p(x) € F,[x] : deg(p(z)) < n, p(a) = -~ = p(a*") = 0}

be a BCH code. As usual, we associate the n-tuple (ao,...,a,_1) with the polynomial
apg+ -+ a1zt If

C" = {p(x) € Fynlz] : deg(p(z) < n, pla) =+ =p(a*") =0},

then C’ is a Reed-Solomon code, and C' = C'|,. We claim that C = C'|p,. First, if
(c1,...,¢ns1) € C,then (cp,...,c,) €C = C'v,, and ¢y = — >y ¢ Thus, (¢1,..., 1) €
C’, and so it lies in @]Fq since ¢,41 € F,. Conversely, if (ci,...,cn41) € U\Fq, then
(c1,...,¢,) € C'lw, = C since all ¢; € Fy, and as ¢, = — Y ¢;, we see that ¢,41 € F,
and (cy,...,¢c,) € C. Thus, C = @hpq, as claimed. By the previous result, C’ is a rational
Goppa code. Therefore, C is a subfield subcode of a rational Goppa code. O]

In order to get Goppa codes of arbitrary large length over a fixed finite field F,,, we need to
work with function fields other than F (z)/F,. We will look in detail at some other examples
of function fields in the next chapter. Later, we will consider the problem of determining
how many rational points there is on a curve. We will prove the Hasse-Weil theorem, which
gives a bound, in terms of ¢ and of the genus of the curve, for the number of rational points.
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6 Examples of Function Fields

In this chapter we work in detail with two examples of curves defined over a finite field.
To help us make computations, we describe, without proof, the connection between points
on the curve and discrete valuation rings of its function field. This connection is a bit
more complicated than the situation for algebraically closed fields, where there is a 1-1
correspondence between the points on a nonsingular curve and the discrete valuation rings
of its function field.

6.1 The Connection Between Points and Places

To describe the correspondence, let & = I, be a finite field, let C' be a nonsingular projective
curve defined over k, and let F' = k(C) be its function field. Recall that for C' to be defined
over k means C' = Z(f) for some homogeneous polynomial f € k[x,y,z]. Let K be an
algebraic closure of k. An exercise, using a small amount of Galois theory, will show that we
may take K to be the union of all finite fields containing k. We view our curve in projective
space P%(K) over K. Let P be a point on the curve. The local ring of P is

Op(C/k) ={p € F : ¢(P) is defined} .
Its unique maximal ideal is
Mp(C/k) ={p € F: p(P) =0}.

We will write Op for Op(C/k) and Mp for Mp(C/k). Let k(P) be the residue field of this
valuation ring; that is, k(P) = Op/Mp. Then k(P) is a finite extension of k. In fact, if evp
is the evaluation map Op — K given by evp(f) = f(P), then evp is a ring homomorphism
from Op to K with kernel Mp. Thus, evp induces an injective homomorphism k(P) — K,
and this sends the coset ¢+ Mp of a function ¢ to the evaluation f(P). f P=(a:b:c) € C,
then p(P) = ¢(a,b,c). Recall that we may represent elements of F' = k(C) as quotients of
homogeneous polynomials over k of the same degree. Thus, we see that ¢(a,b,c) € k(a,b,c),
the field generated over k by the coordinates of P. From this we see that k(P) = k(a, b, c).
In particular, k(P) = k if and only if a,b,c € k. That is, k(P) = k if and only if P is a
k-rational point. For any point P, we set deg(P) = [k(P) : k]. This is the same number as
deg(Mp), since deg(Mp) was defined to be [Op/Mp : k| = [k(P) : k]. So, if P € C(k) is
a k-rational point of C, then deg(Mp) = 1, so Mp is a rational point of Pr. Furthermore,
it can be shown that given any place M of F'/k with deg(M) = 1, then there is a unique
k-rational point P € C' with M = Mp. Thus, there is a 1-1 correspondence between rational
points of C' and rational points of Pp.

For points of degree greater than 1, the correspondence is somewhat more complicated.
Suppose that P = (a : b : ¢) € C. Any automorphism o of K/k yields a new point
o(P) = (o(a),o(b),0(c)) € P*(K). If C is the curve Z(f) with f € k[z,y, 2], then the
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coefficients of f are fixed by . Thus, f(o(P)) = f(P) =0, so o(P) € C. We state without
proof that the set of points {7(P) : 7 € Gal(K/k)} satisfies

{7(P): 7 € Gal(K/k)}| = deg(P),

and that this set is the set of all points whose local ring is equal to Op. Moreover, we have a
1-1 correspondence between places of Py and sets of points on C', where the correspondence
sends Mp to {7(P): 7 € Gal(K/k)}. Moreover, if P = (a: b: ¢) has its coordinates in the
finite field F,-, then Gal(F, /F,) is generated by the automorphism o, where o(t) = t?. Then
{o*(P):1<i<r}is the set of points who share the same local ring. If 7 € Gal(K/k) and
v € k(C), by representing ¢ as a quotient of homogeneous polynomials with coefficients in
k, we see that o(7(P)) = 7(p(P)) = ¢(P). Therefore, ¢ is defined at P if and only if ¢ is
defined at 7(P). This is why P and 7(P) share the same local ring.

Finally, we point out that f(P) = f 4+ Mp for any P € C, although the proof is not too
difficult. Since we have defined evaluation of f € F at a place Mp € Pr by f(Mp) = f+Mp,
we see that our two definition of evaluation agree; that is, f(P) = f(Mp).

To summarize this connection, we state it as a theorem. Recall that an extension F /F,
of finite fields is a cyclic Galois extension with Galois group generated by the Frobenius
automorphism o, where ¢ is given by the formula o(a) = a? for all a € F.

Theorem 6.1. Let F' be the function field of a nonsingular projective curve C' defined over
the base field k = TF,.

1. There is a 1-1 correspondence between rational points on the curve and places of degree
1 of F/k, where a rational point P corresponds to the place Mp.

2. There is a 1-1 correspondence between places of F/k of degree n and sets of points
on the curve with coefficients in Fgn, where a place corresponds to the set of points
all having the same local ring. Alternatively, if K is the algebraic closure of k, and if
P € C, the place Mp corresponds to the set {T(P): 71 € Gal(K/k)}. If k(P) = Fyn,
then P € C(Fyn), and this set of points is equal to {o(P) : 0 € Gal(F/F,)}.

3. If P € C, and if Mp is the corresponding place, then k(P) = k(Mp). Moreover, if
f € F, then f(P) is defined if and only if f(Mp) is defined, and f(P) = f(Mp).

6.2 Connections Between Divisors

To help to compute divisors of functions, we define the intersection divisor of a curve. Recall
that we have defined divisors of F'/k; we will refer to the group of such divisors as Div(F/k).
These divisors are integral linear combinations of points in Pr. The divisors we are about
to define will be combinations of points on a curve C. We will refer to the group of these
divisors as Div(C). Let C' = Z(g) be a curve. If f is a homogeneous polynomial, then the
intersection divisor Z(g) N Z(f) € Div(C) is the divisor ), npP, where P is summed over
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all points in both Z(g) and Z(f), and where np is the multiplicity of P in this intersection.
If D=5 .n;P; € Div(C), then the degree of D is defined to be > .n;. The degree of the
intersection divisor Z(f) N Z(g) is deg(f) deg(g), by the following theorem of Bézout.

Theorem 6.2 (Bézout). Let Z(f) and Z(g) be projective curves in P?(K), where K is an
algebraically closed field. Then the number of points, counted with multiplicity, on both Z(f)
and Z(g) is equal to deg(f) - deg(g).

We will not give the definition of multiplicity, but we indicate its meaning in examples
below. If f,g € kl[z,y,z], and if P € Z(f) N Z(g), then any point of the form 7(P) for
T € Gal(K/k) is also in Z(f) N Z(g). The difference (and connections) between a divisor of
F/k and an intersection divisor of C' will be addressed in examples below.

As means of using intersection divisors in Div(C') to compute divisors in Div(F/k), we
describe the connection between Div(F/k) and Div(C). If P € Pp, set ¥(P) = >, P,
where P; € C are the points whose local ring is Op. That is, ¥(P) is the sum of the
points on C' whose local ring is the discrete valuation ring corresponding to P. The map
U : Div(F/k) — Div(C) is a group homomorphism, and it is degree preserving; that is,
deg(¥ (D)) = deg(D). This follows since if M is a place, then there are deg(M) points on C'
whose corresponding place is M. The map V¥ is injective since distinct places correspond to
distinct sets of points. The connection between the divisor of a function and an intersection
divisor is the following. If f € k(C'), then we may write f = g/h for some homogeneous
polynomials g,h. Then (f) = ¥~1(D — E), where D is the intersection divisor C' N Z(g)
and E is the intersection divisor C' N Z(h). In examples below, we will compute principal
divisors using this fact.

6.3 Elliptic Curves

An elliptic curve is a curve given by an affine equation of the form y? = f(z), where f(z) is
a cubic with no repeated roots. We look at a specific example. Let & = F3, and let C be the

projective curve over k given by the equation y?z = 23 — 2% — 23, This is an elliptic curve

3

since the dehomogenized version of this equation is 4> = 23 — 2 — 1, and 2% — 2 — 1 can be

seen to have no repeated roots over Fs. Let s = x/z and t = y/z, elements of the function
field F' = k(C). Note that t* = s* — s — 1 and that F = k(s,t). Moreover, we claim that
k is the exact constant field of F'/k. To see this, we could give a direct argument, although
instead we quote a theorem that says k is the exact constant field of F//k provided that the
defining polynomial (or the dehomogenized polynomial) is absolutely irreducible. This latter
condition means that the polynomial is irreducible over L(s,t) for any field extension L of k.
To see this is true in our example, let f =y* — 23 + 2 + 1. If f factors in L[z, y] as f = gh,
then either the degrees in y of both g and h are 1, or one has degree 0 and the other degree
2. This latter case cannot happen since one of g and h is then a polynomial in  which would
divide every coefficient of f, which is clearly false. If g and h are both linear in y, then we
may write g = ay+b and h = cy+d with a,b, c,d € k[z]. Then f = (ac)y*+ (ad+ bc)y + bd.
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Then ac = 1, so a,c are units in k[z]. They are then constants, and by multiplying and
dividing accordingly, we may assume that a =c=1. Then b+d =0 and bd = —2® + 2 + 1.

This yields v* = 23 — 2 — 1, which is false since ®

— z — 1 has no repeated roots (and is
square free). This contradiction shows that f is irreducible in L|x,y] for any field L D k.

Since C' = Z(f) is nonsingular, the genus of F/k is given by the formula

g = (deg(f) — 1)(deg(f) ~2) = 1.

It is easy to check that C is a nonsingular curve; essentially this follows from the fact
that 23 — 2 — 1 has no repeated roots over F5. Therefore, each local ring Op for P € C'is a
discrete valuation ring of F'.

This curve has a unique rational point; to see this, note that if (a: b: ¢) € C(F3), and if
¢ # 0, then we may assume that ¢ = 1. Then * = a®>—a—1. Checking the three possibilities
of a € T3, we see that there are no solutions to this equation. However, if ¢ = 0, then 0 = a?,
so a = 0. Finally, since b # 0 else (a : b : ¢) is not a valid point in P%, we see that, by
dividing by b, we may assume that b = 1. Therefore, P,, = (0 : 1 : 0) is the unique rational
point of this curve, and it is the unique point at infinity; recall that we can view the affine

3 —x — 1 as sitting inside C' by sending a point (a,b) to (a : b: 1). Thus, points

3

curve iy = x
at infinity are points whose third component is 0. Let Cj be the affine curve y? = x
viewed inside C. So, C'= Cy U {P}.

We now consider points of larger degree. To do this we need to consider field extensions
of F3. The polynomial T2 + 1 is irreducible over F3. Therefore, F5[T]/(T% + 1) is a field,
and since it has dimension 2 over 3, it is isomorphic to Fy. If o is a root of T2 + 1, then

—r—1,

Fg = F3(). A computation will show that
CFy)={(0::1),(0: —a:1),1:a:1),(1:—a:1),(-1:a:1),(-1:—a:1),Py}.

In fact, from the equation y* = z(z —1)(z+1) — 1, we see that if z = 0,1, —1, then y? = —1,
so y = ta. All of these points have degree 2 except for P, since their coefficients generate
Fy. By a Maple calculation, one can show that C'(Fa7) has 28 points. All points in C'(Fy7) but
P, is a point of degree 3 since each has at least one coordinate outside I3, so the coordinates
generate Fo7. These calculations can be done with the Maple worksheet POINTS.MWS, which
defines procedures for computing points on an affine or a projective plane curve.

We now look at examples of computing the intersection divisors. To give some notation
to connect divisors of F'/k and divisors of C, if (a : b: 1) € C, we write the corresponding
place in Pp as P, or as P, ;. We use the notation P., both for the point (0: 1 :0) and the
corresponding place of F'/k.

Example 6.3. Consider the intersection divisor C' N Z(z). If (a: b:¢) € C, then (a: b :
c) € Z(z) if and only if ¢ = 0. Thus, the only point on both curves is P,,. Since C'is the zero
set of a cubic and z is linear, their degrees multiply to 3. Therefore, this intersection divisor
is 3P,. Similarly, if we consider C'N Z(z), then P = (a : b : ¢) is on both curves if a = 0

o7



and b?c = a® — ac® — 3 = —c?. Therefore, if ¢ = 0, then b = 1, and we get Py. If ¢ # 0, we
may assume that ¢ = 1, and then b?> = —1, so b = +a. We then have two points (0 : a : 1)
and (0 : —« : 1). There are three points in total in this intersection, so the multiplicity of
each is 1. Thus, the intersection divisor is Py + (0 : @ : 1) + (0 : —a : 1). This is a divisor
in Div(C). Under the map ¥ defined above, this divisor is W(Ps + Poa).

Example 6.4. Let us consider the divisor of s = z/z in Div(F/k). As we calculated earlier,
the intersection divisors CNZ(z) and CNZ(z) are Poo+(0: v : 1)+(0: —a : 1) = U(Pyo+Pso)
and W(3P,), respectively. Thus, by the relation between principal divisors and intersection
divisors, (s) = Poo — 2Px.

Example 6.5. We calculate the divisor of ¢ = y/z. We have already calculated the inter-
section divisor C' N Z(z), getting 3P5. We next must see what is the intersection divisor
CNZ(y). Apoint (a:b:c)ison Z(y) if and only if b = 0. Since b*c = a® — ac® — ¢,
we have a® = ac®> + . If ¢ = 0, then a = 0; thus, ¢ # 0. By dividing by ¢, we may
assume that ¢ = 1. Then a® —a — 1 = 0. There are three roots in K to this equa-
tion. If we label them aq, as, and as, then the points on this intersection divisor are
(g :0:1), (ag : 0:1), and (az : 0 : 1). Therefore, the multiplicity of each point is 1,
and so CNZ(y) = (ap : 0: 1)+ (az : 0: 1)+ (ag : 0: 1). Each a; generates the field
F3(a;) = Fy7 since 23 — x — 1 is easily seen to be irreducible over Fs (because it has no
roots in F3). These three points are of the form {7(a; : 0:1): 7 € Gal(Fy7/F3)}. There-
fore, the three correspond to the one place P,,o. This is then a place of degree 3, and so
CNZ(y) = V(P,0). Since (g) is the difference of the preimages of these intersection divisors,

we have (t) = P,,0 — 3P.

Example 6.6. We calculate the space L(nPy). If n > 0 = 2g — 2, then the Riemann-Roch
theorem yields dim(nPs) = deg(nPx) + 1 — g = n. We claim that

{s¥:0<i,0<5<1,2i+3j <n}

is a basis for L(nP,). These elements clearly are linearly independent over k since {1,¢} is
a basis for F' over k(s) and since s is transcendental over k. Moreover, it is not hard to see
that there are n elements in the set, so we only need to show that all are in L(nPy). We
see that this is true since

(s'yt?)) = i(s) + j(t) = i (Poo — 2Ps) + §(Pay0 — 3Px)
= (iPos + jPay0) — (20 + 35) Ps.

Therefore, if 2i + 35 < n, then (s't/) + nP, > 0.

We finish this section by giving a connection between divisors of F/k of degree 0 and
rational points on C'. While we will not need this for our coding theory purposes, it will help
to illustrate one of the first notions in the theory of elliptic curves. First, recall that P, is a
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rational point. If ) is another rational point, then () — P, is a divisor of degree 0. We claim
that every divisor of degree 0 is equivalent to a divisor of the form ) — P, for some rational
point ). To prove this, let D be a divisor of degree 0. Then D + P, has degree 1. Since the
genus of C' is 1, the Riemann-Roch theorem yields dim(D + P.,) = deg(D + Px) = 1. Thus,
there is a nonzero f € L(D + Py). Then D + Py + (f) > 0 is a positive divisor of degree 1.
The only way for this to happen is if D + P, + (f) = @ for some rational point ), which
shows that D is equivalent to @) — P,,. We have thus proven that every divisor D of degree
1 is equivalent to a divisor of the form ) — P,,. If D is principal, then D is equivalent to
0 = Py, — Py. On the other hand, if ) # P, we claim that ) — P, is not principal. For, if
Q — Py = (f) for some f, then (f)o = @ and (f)s = Ps. However, deg((f)s) = [F : k(f)],
which would force [F': k(f)] =1, or F = k(f). Since a rational function field has genus 0,
this cannot happen. Thus, ) — P, is not principal. Similarly, if @ # @’ are both rational
points, then Q — P, is not equivalent to Q' — P,,. As a consequence, the subgroup of divisor
classes of degree 0is {Q) — P : Q € C(k)}.

Example 6.7. To give some motivation for looking at the group of divisor classes of degree
0, a classical result about elliptic curves is that one can define a group structure on the set
of rational points such that P, is the identity of the group. Given rational points P and @),
to define P + @, consider the line connecting P and (). This line will intersect the elliptic
curve in three points. Two of these points are P and ); let R be the third point. Next,
the line connecting P,, and R hits the curve at a third point. This third point is the point
P+ Q. It is tedious to show that we do get a group structure from this.

(In the picture O = Py, T'= PxQ, and R = P+ @Q.) However, The function that sends
@ to the divisor class of () — P, is a group isomorphism from this group of rational points
to the group of divisor classes of degree 0. Thus, a non-geometric way to define P + @ is
that P + @ is the unique point R that satisfies R — Py, ~ (Q — Px) + (P — Py). To see
why this is true, say that the line L passing through P and Q hits C' at T', and the line L'/
passing through P,, and T hits C' at R. There are linear polynomials f and g with L = Z(f)
and L' = Z(g). The divisor (f/g) is the difference between the intersection divisor C'N Z(f)
and the intersection divisor C' N Z(g). These divisors are P + Q + T and Py + T + R,
respectively. Thus, in the divisor class group, we have 0 ~ (f/g) = P+ @ — P, — R. Thus,
R~P+Q@Q—Py,and s0 R— Py, ~ (Q — Py) + (P — Py).
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6.4 Hermitian Curves

In this section we work with a curve that has many rational points. This curve will allow
us to construct Goppa codes of large length. Let ¢ be a power of a prime, and let C' be the
Hermitian curve given by the equation y?z + yz¢ = z7™! over the field k = Fp. We first
note that C is a nonsingular curve since the three partial derivatives of y%z + yz9 — x9%!
simultaneously vanish only at + = y = z = 0. Let F be the function field F' = k(C') of C
and let s = z/z and t = y/z. Then F = k(s,t), and t9 + ¢ = s?"1. The base field k is the
exact field of constants because 2971 — y? — y is absolutely irreducible. To see that this is
true, let L be any field extension of k. The Eisenstein criterion, applied to the principal ideal
domain L[y|, shows that 291 — y9 — 3 is irreducible over L(y) since y? + y is a square-free
polynomial since its derivative is relatively prime to y? 4 y.

As a consequence of this, we see that [F : k(s)] = ¢ and [F : k(t)] = ¢ + 1. For the first
equation, we have F' = k(s)(t), so [F': k(s)] is equal to the degree of the minimal polynomial
of t over k(s). This polynomial clearly is T9 + T — s € k(s)[T], which has degree ¢. A
similar argument holds for the second equation.

We first consider what are the k-rational points of C'. We claim that there are 14 ¢* such
points. First, let (a:b:¢) € C. If ¢ =0, then a = 0, and so b # 0. By dividing by b, we see
that the only such point is (0 : 1:0). This is the only point at infinity; that is, it is the only
point not on the affine curve y? 4y = x9*! consisting of all points whose third component is
1. This point is clearly a k-rational point. Now, consider rational points (¢ : b: 1). If a € k
is any element, then we note that a?™' € F,. For, since a € F 2, we have a? = a. Then

q 2 2
(aq+1) =a’ M =q"a’=qa-a? = a?",

so a?™! is a root of x4 —z. Since the elements of F,, are precisely the roots of this polynomial,
we see that a?™' € F,, as claimed. Next, if a € F,, we claim that there are ¢ elements of F
satisfying y? +y = «. To see this, recall that F,. is a Galois extension of F,, and the Galois
group is the cyclic group generated by o, where o(t) = t¢ for all t € F 2. Moreover ¢ has
order 2 since [F2 : F;] = 2. An element y satisfying y?+y = o is then an element y satisfying
o(y) +y = a. Consider the polynomial t* — at + € F,[t], where § € F, is chosen so that
this polynomial is irreducible over IF,. This is possible since F2 can be generated over F, by
an element whose minimal polynomial has degree 2 over F,. This minimal polynomial then
has two roots in F 2, and these roots are not in F,. Say the roots are y and y'. Since o(y) is
also a root, we have v = o(y). Then t* —at+ 3 = (t —y)(t — o(y)) shows that y+ o (y) = a,
or y? +y = «a. Thus, Fpe contains a root of y? + y = «. This polynomial then splits over
F,2 since F,2 is Galois over ;. Furthermore, since the derivative of y? +y — « is 1, which
is not zero, there are no repeated roots. So, there are exactly ¢ elements of Fg . satisfying
Y7+ y — a. Since this is true for every a € F,, and since z?t! € F, for all € F 2, we see
that the number of pairs (a,b) satisfying b7 + b = a?"! is ¢® as there are ¢* choices for a,
and for each a there are ¢ solutions to b? + b = 9. Finally, adding our point (0:1:0) at
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infinity, we have 1 + ¢* points over F .

The Hermitian curve y9z+yz9 = 297! is an example of a curve that meets the Hasse- Weil
bound. We will see that this bound is a consequence of the Hasse-Weil theorem, which proves
the Riemann Hypothesis for algebraic function fields over finite fields. This bound says that
the number of k-rational points N of a curve of genus g satisfies

[N —(1+ k)] < 29v/]K].

If k = Fp, then |k] = ¢*, and so this bound is [N — (1 + ¢?)| < 2¢qg. Because our curve is
nonsingular, the genus is given by the formula g = (deg f — 1)(deg f — 2), where f is the
polynomial defining the curve. This degree is g+ 1, so g = %q(q —1). The Serre bound then
simplifies to

IN-(1+¢)|<(q—1),

or
¢ -2 -1<N<1+¢

Therefore, N is as large as possible for a curve of genus g that defined over F..

We now look into calculating some divisors on C'. We mimic our notation in the previous
section by writing P, for the place corresponding to the point (a : b : 1), and P, for the
place corresponding to (0 : 1 :0).

Example 6.8. First, let us consider the divisor of z/z. We calculate this as we calculated
principal divisors for the elliptic curve example. So, consider first the intersection divisor
C'NZ(z). Since points on the curve satisfy the equation y?z +y29 = 29", if a point (a : b : ¢)
is in Z(z), then a = 0 and b%c + bc? = 0. If ¢ = 0, then b # 0 to have a legitimate point
of projective space, so the point is (0 : 1:0). If ¢ # 0, we may divide by ¢ to assume that
¢ =1. Then b?4b = 0. There are exactly ¢ solutions in k to this equation (see the argument
above for rational points of C'); say they are by,...,b,. Then the points in C'N Z(z) are
(0:1:0),(0:by:1),...,(0: b, : 1). Thus, the multiplicities of each must be 1, and so
CNZ(x)=0:1:0+@0:by:1)+---+(0:b,:1). As for C N Z(z), we see that if
(a:b:c)€ C has c=0, then a =0, and so the only point we get is (0 : 1 :0). This point
must then have multiplicity ¢ + 1, so C N Z(2) = (¢ +1)(0: 1 :0). Therefore,

U((z/2)=0:by:1)4+---+(0:bg:1)—¢q(0:1:0).

The divisor (z/z) is then equal to Py, + - -+ + Py, — ¢Px. In particular, this says that Py
is a pole of x/z. It is not at first apparent that this is so, because P, is a zero of both z
and of z. However, we can manipulate the defining equation of the curve to see why this is
so. From y%z + yz? = z9*!, dividing by 29z gives

r yl4yzi!
z e
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The numerator of the right hand quotient is defined at P, and is not 0 at P, while
the denominator vanishes at P,,. Thus, Py is indeed a pole of x/z. Moreover, we see
that vp_(x/2) = —qus(x), which shows that the order of the pole P, is at least ¢, since
Ueo(z) > 1. By realizing that P, is the only pole of z/z, we see that (z/2)s = ¢Px since
[F': k(z/z)] = q, which we pointed out earlier.

Example 6.9. For another example of calculating divisors, consider f = y/z. Since we have
already calculated CNZ(z) = (¢+1) Py, we only need to calculate CNZ(y). If (a:b:¢) € C
lies on Z(y), then b = 0. Therefore, we get a = 0, since bic + bc? = 9. Then ¢ # 0, and
so (@:b:¢)=(0:0:1). This point then must have multiplicity (¢ + 1). Our divisor (y/z)
is then equal to

(y/2) = (@ +1)Poo = (¢ +1)Poc = (¢ + 1) (Foo — Pec) -
Next, we calculate the space L(nPsy ), where n is an arbitrary positive integer.
Proposition 6.10. The space L(nPy,) has basis {s't? : 0 <i,0<j <q—1,ig+ j(qg+1) < n}.

Proof. We have shown that (s) = Foy, + -+ + Py, — ¢Px and () = (¢ + 1)(FPoo — Px).
Therefore,

(s't7) =i(s) 4+ j(t) = i(Popy + -+ Pov, — ¢Po) +7(q+ 1)(Poo — Po).

Thus, st/ € L(nPy) if and only if iq + j(¢ + 1) < n. Moreover, since [F : k(s)] = ¢, the
elements 1,¢,...,t7 ! span F as a k(s)-vector space. We then see that the set of elements
given above is k-linearly dependent (since s is transcendental over k). It remains to show

that they span L(nPs). To see this, let f € L(nPy), and write

poJot ittt !
g Y

where f;, g € k[s] and ¢ has no factor in common with every f;. Since (f) +nP, > 0, the
only possible pole of f is P,. Thus, the only zero of g can be P,,. However, since g is a
polynomial, P, is not a zero of g, and that g has a zero unless it is constant. Suppose that
g is not a constant, and let a be a zero of g. Since there is no factor of g common to each

;, we see that f;(a) # 0 for some j. The polynomial >, fi(a)T" is nontrivial, so there is
some nonzero value b (in an algebraic closure of F,2) for which the polynomial evaluated at
b is nonzero. Then Y. fi(a)b* # 0. Consider a point (a : b : ¢), where ¢ # 0 is any element
satisfying (a : b : ¢) € C. Finding a ¢ is possible, since ¢ can be any root of the polynomial
VIT + bT? — 9!, and this polynomial has a root in an algebraic closure of F 2 since b # 0.
If P is a place corresponding to the point (a : b : ¢), then P is a pole of f, which is a
contradiction since the only pole of f is Py, and P # P, as ¢ # 0. This forces g to be a
constant, so f is a linear combination of {s#/ : 0 < j < ¢ —1,0 < i}, as desired. Il
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With this example we can nicely illustrate the dependence of dim(D) on deg(D). The
Maple worksheet HERMITIAN.MWS will calculate the size of the basis of L(nP,,); using it, we
obtain the following table in the case ¢ = 8. Recall that since the genus is ¢(q¢ — 1)/2 = 28,
if deg(D) > 2g — 2 = 54, then dim(D) = deg(D) + 1 — g, while dim(D) > deg(D)+1—g in
any case.

n | deg(nPy) +1—g | dim(nP.)
45 18 21
46 19 21
47 20 21
48 21 22
49 22 23
50 23 24
o1 24 25
52 25 26
53 26 27
54 27 28
55 28 28
56 29 29
57 30 30

63



7 The Hasse-Weil Theorem

In this final chapter we will introduce the Riemann zeta function of a curve defined over a
finite field and see how knowledge of its zeros yield bounds on the number of rational points
of the curve. We start off by describing the classical Riemann zeta function, including writing
it in a way that will allow us to define a zeta function of an arbitrary algebraic number field,
and then to define a zeta function for an algebraic function field F' in one variable over a

finite field.

7.1 The Riemann Zeta Function

The classical Riemann zeta function ((s) is defined by the formula

oo
= E n*S
n=1

From the integral test, we see that this series converges if s > 1. By making use of complex
function theory, we can view ((s) as a function of a complex variable s, and by doing so, we
get a complex analytic function that converges for Re(s) > 1. This function encodes a lot of
information about primes; one indication of this is the product formula for ((s); which says
that
cs) =T -p)"
p

where the product is over all prime numbers. The proof of this fact can be found in standard
complex analysis texts. To give an intuitive idea of why it is true, first consider ((s)(1 —2%).

We have
C(s)(1—2%) Zn —Z n)"*:Zm’S,

n=1

where m runs over all odd numbers. Next,

¢(s)(1—27)(1 st—z m)T =Y

m T

where r runs over all integers not divisible by 2 or 3. Continuing this reasoning, and being
careful with the limits, will yield the result.

The Riemann hypothesis, probably the most important unsolved problem in mathe-
matics has to do with the zeros of ((s). The functional equation for ¢ says that ((s) =
255 L sin(7s/2)T(1 — s)¢(1 — s), where I'(s) is the Gamma function, a generalization of the
factorial function in that I'(n) = n! if n is a nonnegative integer. From this equation we see
that there are “trivial” zeros of ((s), occurring when sin(7s/2) = 0. Other zeros of ((s) are
then called nontrivial zeros. Using the product formula for {(s), it follows that ((s) has no
zeros in the half plane Re(s) > 1. From the functional equation, one sees that the only non-
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trivial zeros occur in the strip 0 < Re(s) < 1. The Riemann hypothesis conjectures that all
of the nontrivial zeros of ((s) are on the line Re(s) = 1/2. While this is still unproven, Weil
proved in 1941 that the analogue of the Riemann hypothesis for zeta functions associated
to function fields of curves over finite fields is true. It is this fact that we will see in this
chapter, and how this fact leads to a bound on the number of rational points of a curve.

7.2 Riemann Zeta Functions of Number Fields

We will define an analogue of the Riemann zeta function which will be associated to a curve
defined over a finite field. However, to motivate its definition, we first discuss the Riemann
zeta function of an algebraic number field. To motivate the definition of these functions, we
view ((s) in another light. To do this we recall some of the theory of Dedekind domains.
Let A be a Dedekind domain with quotient field K. A fractional ideal of A is a nonzero
A-submodule I of K such that al C A for some nonzero a € A. For example, if r = a/b € K,
then (r) = rA is a fractional ideal of A since rA is an A-submodule of K, and b(rA) = aA C
A. We call (r) a principal fractional ideal. Furthermore, as this example indicates, if I is a
fractional ideal and al C A for some a, then al is an ordinary ideal of A. We extend the
definition of product of two ideals to the case of fractional ideals, by setting, for fractional

ideals I and J,
IJ = {Zaibi ca; €1b; € Jn> 1},
i=1

the usual formula for the product of two ideals. It is easy to show that IJ is a fractional
ideal. Let G be the set of all fractional ideals of A. Then this multiplication is an operation
on A, and the fractional ideal A is the identity for this operation. Multiplication of fractional
ideals is an associative operation, so we have a semigroup with identity. However, one very
important fact about Dedekind domains is that any fractional ideal has an inverse. If I is a
nonzero fractional ideal, then

(A:I)={ze K:zI C A}

is another fractional ideal, and it is the inverse of I in G. Therefore, G is an Abelian group.
The set of principal fractional ideals is a subgroup of GG, and the resulting quotient group
is called the ideal class group of A. The ideal class group of A is often denoted by CI(A).
If A= 7, then CI(A) = 0. More generally, a Math 582 exercise shows that Cl(A) = 0 if
and only if A is a unique factorization domain. Therefore, C1(A) measures the factorization
properties of A, in some sense. For some terminology, we call a fractional ideal positive if it
is an ordinary ideal, and we write I > 0 when this occurs.

We now rephrase the definition of the Riemann zeta function. Since Z is a principal ideal
domain, every nonzero ideal of Z can be written uniquely in the form (n) for some n > 1.
If I = (n), then we recover n as n = |Z/I|. We call this number the norm of I, and write
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N(I) for this. In other words,
N(I)=|z/1].

Therefore,

C(s) =) N(I)™

1>0

In this formulation, we can extend the definition easily to other number fields. Recall that
an algebraic number field K is a finite extension of Q. If A is the integral closure of Z in
K; that is, A is the set of all elements of K that satisfy a monic polynomial equation with
coefficients in Z, then A is a Dedekind domain. If I is an ideal of A, we set N(I) = |A/I|.
We define the Riemann zeta function ,(s) by

Crl(s) =Y N(I)™,

>0

where the sum is over all nonzero ideals of A.

To view this in a slightly different way, recall that since A is a Dedekind domain, any
nonzero ideal I can be written uniquely in the form I = P{* --- P’ where the P, are prime
ideals and e; > 1. By the Chinese remainder theorem, it follows that

A/l =A/P & - @ AJP.

A calculation, which can be found in the handout on Dedekind domains, shows that |A/P¢| =

|A/P|° for any prime ideal P and positive integer e. Therefore,

€

A/ =TT 14/m,

Thus, N(I) =11,

7

N(P)e.

7.3 Riemann Zeta Functions of Curves

To define zeta functions for curves, we point out that the group of fractional ideals of A is the
free Abelian group on the set of nonzero prime ideals of A. This is just a fancy way to say
that every ideal can be written uniquely as a product of prime ideals. Every fractional ideal
is, in multiplicative notation, an integer linear combination of prime ideals. This indicates
that the group of fractional ideals of a number ring is the analogue of the group of divisors of
a function field F'/F,. Let P be the set of places of F'/IF; this set is the analogue of the set
of nonzero prime ideals of a Dedekind domain. For P € P, we define the norm N(P) of P
by N(P) = |F,(P)|, which is equal to ¢?¢") since deg(P) = [F,(P) : F,]. f E=Y""_ &P
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is a positive divisor of F'/F,, we define the norm of E by

N(E) = [[N(P)s = [[ g = gz estest)
=1 =1

— qdeg(E).

Finally, we define the Riemann zeta function ((s) by

Cr(s) =) N(E)™,

E>0

where the sum is over all positive divisors of F//F,. We can rewrite this a little, which will
lead us to a related function. We have

Cr(s) = Z N(E)™® = Z g o8B — Z(q—s)deg(ﬁ,‘)‘

E>0 E>0 E>0

Let us write t = ¢—° for the moment. Then

Cpls) =Y 1) = fj oo = fj Ant™,
n=1

E>0 n=1 \deg(E)=n

where

A, =|E € Div(F/F,) : E > 0,deg(E) =n|.

Note that A; is the number of places of degree 1; this follows since a positive divisor of
degree 1 must be a single place, and then the place is necessarily of degree 1.

We need to investigate the sets {E : £ > 0,deg(F) = n} in order to know that this for-
mulation of ((s) is well defined. However, before we do this, we set

Zp(t) = i Ant",
n=1

and call this the Z-function associated to the function field F/F,.

Lemma 7.1. If n is a positive integer, then there are only finitely many positive divisors of
degree n.

Proof. If E =Y. e;P; is a positive divisor of degree n, then n = .e;deg(P;),s00 <e; <n
and deg(P;) < n. It is then enough to prove that there are only finitely many places of
degree less than or equal to n. To do this, suppose that F' is the function field of a curve X
defined over F,. We have seen that the places of degree r correspond to sets of r conjugate
points with coefficients in F,-. Since there are only finitely many such points, since Fyr is
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finite, there can be only finitely many places of degree r. Since this is true for any r, there
are only finitely many places of degree < n. m

Let Cr be the divisor class group of F/F,. We set C% to be the subgroup of divisor
classes of degree 0.

Lemma 7.2. The group C% is a finite group.

Proof. Let E be a divisor of degree n > ¢, where g is the genus of F//F,. We set Cp =
{[D] : deg(D) = n}. Tt is elementary to check that C% is the coset C% + [E]. Therefore,
|C% = |C%|. Tt then suffices to show that C% is a finite set. By Riemann’s theorem,
dim(F) > deg(E) + 1 — g > 1 by the choice of E. Therefore, there is a nonzero f € L(FE);
the divisor E + (f) is then a positive divisor similar to E. Thus, every divisor of degree n is
equivalent to a positive divisor (of degree n). This yields C% = {[C] : C' > 0,deg(C) = n}.
By the previous lemma, there are only finitely many positive divisors of a given degree, so
|C?| < 00, and so |C%] < oo, as desired. O

Corollary 7.3. If A, = |[{E € Div(F/F,) : E > 0,deg(E) = n}|, then A, is a nonnegative
integer.

The degree map deg : Div(F/F,) — Z is a group homomorphism. The image is a
subgroup of Z; therefore, there is a positive integer 0 such that the image is 0Z. The integer
0 then can be characterized as the smallest degree of a nonzero divisor, or the greatest
common divisor of the degrees of places. Furthermore, every divisor’s degree is a multiple
of 0. We will see later that 0 = 1.

Definition 7.4. The class number of F/F, is the integer h = |C%|.

Note that, from the proof of the lemma above, if C7 is the set of divisor classes of degree
n, and if C% is nonempty, then C} is a coset of C%, so |Cf| = h. We now investigate the
function Z(t). We need further information about the numbers A,,.

Lemma 7.5. Let [C] € Cp. Then

1 .
HAe[C]:A>0} = F(qdlm((l) —1).
Furthermore, if n > 2g — 2 and 0 | n, then
h
Ay=—— ("7 -1).
n q-— 1 (q )

Proof. Let C' be a divisor, and set n = dim(C'). Then any divisor A € [C] is of the form
C + (f) for some f € F* and if A > 0, then f € L(C), by definition of L(C). Now,
C+ (f) = C+(g) if and only if (f) — (g9) = 0, or (fg~') = 0. Therefore, as a principal
divisor is 0 only when the function is a constant, we see that C' + (f) = C + (g) if and
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only if g = af for some a € F,. Therefore, for every A € [C] with A > 0, there are ¢ — 1
elements f € L(C) with A = C + (f). Furthermore, the number of nonzero f € L(C) is
|L(C)| — 1 = ¢¥™© — 1. Thus, the formula

1 .
{A€IC): A2 0} = —— (g™ 1)
q —
is true. For the second statement, suppose that n > 2g — 2 and 0 | n. The divisibility
condition implies that there are divisors of degree n. Moreover, if deg(C') = n, then dim(C') =
deg(C) + 1 — g by the Riemann-Roch theorem. By the first part of the lemma and the
definitions of A,, and h, we have

An = [{[C] : deg(C) = n}|- {A € [C]: A =0}

. . 1 dim(C) . h nt+l—g
h q—l(q 1)_q_1(q 1)

since h = |C%| = |C%|, which was shown in the proof of the previous lemma. O
Corollary 7.6. The power series Z(t) =Y oo o Aut™ converges for |t| < ¢~

Proof. We have Z(t) = > Aat™. A little algebra and a basic fact about power series
shows that if

lim Anpr =c
n—oo An ’
then the power series converges for |t| < ¢~!. From the previous lemma, we have, for n large
enough,
o (ge gty
= Jm e ¢
Thus, the power series converges for [t| < ¢~ ]

Lemma 7.7. Let F/F, have genus 0. Then h = 1.

Proof. We need to prove that every divisor class of degree 0 is principal. Let C be a divisor
with deg(C') = 0. By Riemann’s theorem, we have dim(C') > deg(C) +1 — g = 1. Thus,
there is a nonzero f € L(C). Then (f) + C > 0, and (f) + C also has degree 0. This forces
(f)+C=0,50C=—(f)=(f"") is principal. O

To help with the proof of the following proposition, recall that the power series represen-
tation of 1/(1 — z) in the range |z| < 1is >~ a™. Moreover, Y ° 2" = 2" /(1 —x) on this
range. We now see that Z(t) is a rational function. This indicates how much simpler zeta
functions for curves over a finite field are than zeta functions of number fields.
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Proposition 7.8. Let g be the genus of F'/F,. Consider Z(t) on the interval of convergence
lt| < q .

1. If g =0, then

1 q 1
2= (1—<qt>8‘1—t8)‘

2. If g > 1, then Z(t) = F(t) + G(t), where

F(t) _ Z qdim(C)tdeg(C)’
0<deg(C)<2g9—2

where the sum is over all divisor classes [C] with 0 < deg(C) < 2¢g — 2, and

h ql—g(qt)2972+8 1
G“>:q—1< T— (gt ‘1—t8>‘

Proof. First, suppose that ¢ = 0. By the previous lemmas, and since A,, = 0 if 0 does not

divide n,
ZAntn _ Z Aamtam _ Z 1 (q8m+1 . 1) 1om
n=0 m=0 m=0 4= 1
1 o0 { o0
=—— gD (@) => )"
q 1 m=0 m=0

1 q 1
g1 \1—(qt)? 1-19)°

The final equality holds for |t| < ¢~!, since both power series converge on this range to the
respective rational functions.
For the second part, suppose that ¢ > 1. We have, by the definition of A,,, and the

lemmas,

Sar= Y peiiazo o= ¥ (TS o
n= [C],deg(C)>0 [C],deg(C)>0

— L Z qdim(C)tdeg(C) _ 1 Z 75deg(C’)

qg—1 qg—1
[C],deg(C)>0 [C],deg(C)>0
1 i 1 .
- im(C) 4deg(C) dim(C) 4deg(C)

0<deg([C])<2g—2 deg([C])>29—2

b $ pes)

1
971 aeg(ion=0
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The first term, by definition, is F'(¢). To analyze the second and third terms, recall that
if n is divisible by 0, then there are exactly h divisor classes of degree n; the set of these
divisor classes is the coset {E + C : deg(E) = n,[C] € C%} of C%, and h = |C%|. Therefore,
the third term simplifies as

[e.e]

—1 deg(C) __ —h om __ —h 1
- oot - tom = — )

97 % deg((cz0 1~ 1= ¢-1

For the second term, we have, by Riemann-Roch,

1 1

dim(C) 1deg(C) __ deg(C)+1—gydeg(C)
L s e L 5 o
deg([C])>29—-2 deg([C])>2g—2
1—g h 1—g
_ 49 deg(c) __ 4 a\m
= t)eestt) = t
2 @ 1 2 (@)
deg([C])>2g—2 oOm>2g—2
hql—g o onm hqlfg(qt)Zg—2+8 o0 om
S () =M S ()
29—2 —
m= 5= m=0
B hq1_9<qt)2g—2+8 1
g1 1—(qt)?

because 0 divides 2g — 2, since 2g — 2 is the degree of a divisor, namely the canonical divisor.
The sum of the second and third terms is G(¢). Since the sums for G(t) converge on |t| < ¢},
the series for Z(t) converges on the same interval. ]

Corollary 7.9. The function Z(t) is a rational function with a simple pole att = 1.

Proof. The formula for F(t) shows that F(t) is a polynomial, since there are only finitely
many divisor classes [C] with 0 < deg(C) < 2g — 2. The formula for G(t) shows that it is
a rational function with a simple pole at ¢ = 1. Therefore, Z(t) = F(t) + G(t) is a rational
function with a simple pole at ¢t = 1. Il

We now give a product representation for Z(t).

Proposition 7.10. The function Z(t) can be represented on |t| < ¢! as

Z(t) = ] (1 -t~

PePp
Therefore, Z(t) # 0 for |t| < ¢t

Proof. We need a fact about convergence of infinite products: the product [[°" (1 + ay,)
converges absolutely if and only if >~ a, converges absolutely. This fact can be found in

most complex analysis books. Therefore, the product above converges absolutely on || < ¢!
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since

> e < i At" = Z(t)
=0

PePp n=

converges absolutely on [t| < ¢~!. By writing each term of the product as a geometric series,
and doing lots of rearranging of terms, we have

1 00
H (m> _ H Ztndeg(P)

PEPF PEPF n=0
o0
SN WY
E>0 n=0
— Z(0).

O

To prove that 9 = 1, we will need to consider how function fields behave under base
extension. Let X = Z(f) be a nonsingular irreducible projective curve defined over F,, and
let X be its function field. Then F' = F (s, ), where s = x/z and ¢t = y/z, viewed as rational
functions on X. We assume that [, is the exact constant field of F//F,. Let r > 1, and
consider the extension F,/F,. We can view X as a curve over F -, and the function field
of X over Fyr is Fr(s,t). We write F, for this function field. What we need to know is
information about places of F, in relation to places of F'. Note that, in any case, our curve
X is the set of all points (a : b : ¢) € P?(F,) such that f(a,b,c) = 0, where F, is an algebraic
closure of F; (or of F,r). If P is the place of F' that corresponds to (a : b: ¢), then

P={peF:ypabc)=0}.
Also, if P’ is the place of F,. that corresponds to (a : b : ¢), then
P' ={p€F,.:¢(a,b,c)=0}.

Thus, PPNF = P.

In the proof of the following lemma, we need to know some facts about finite fields. First,
recall that if ¢ is any prime power, then the fields containing IF, are exactly the fields of the
form - for some r > 1. Conversely, if T" is a subfield of F,» containing F,, then T" = Fys for
some integer s that divides r, since if ¢t = [F, : T], then ¢" = |F| = |T|" = ¢**. Moreover,
the field F,s is characterized as the subfield of F,- consisting of the solutions to the equation
7 =1,

Lemma 7.11. Let P be a place of F, and let P' be a place of F, for which PN F = P. If
m = deg(P), then deg(P’) = m/ged(m,r). Moreover, there are ged(m,r) many such P’.

Proof. Let X be a curve whose function field over F, is F'. Choose a point (a:b:¢) € X
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whose corresponding place in F' is P and whose place in F, is P’. The residue field of
P is F,(a,b,c) and the residue field of P" is Fyr(a,b,c). Then, by definition, deg(P’) =
[Fyr(a,b,c) : Fpr] and deg(P) = [Fy(a,b,c) : F,]. Set L =F,(a,b,c). Then the residue field of
P’ is the composite field LF,~. By the theorem of natural irrationalities from Galois theory,
[LF, : F,| = [L: LNEF,]. Note that, since m = deg(P), we have L = F;m. We claim that
FrNFm=F

qt> Where d = ged(m, 7). If this is true, then

_ L F [Fgn:F]  m
L LnFy] = [LNF, :F,]  [Fu:F, ] d’

as desired. To prove the claim, note that F,a C F;, N[Fgm since d divides both r and m. For
the reverse inclusion, let @ € F;r NFym. Then a? = a and a?" = a. Since d = ged(m, 1),
we may write d = am + (r for some integers «, 3. Since d, m,r are all positive, one of «, 8
is positive and the other is negative. Suppose that a > 0. Then d — fr = am. A simple
induction shows that a?*™ = a and ¢ = a. Therefore,

d
am d—pBr d, —pBr —Br q d
a=a? =af =aq?9 = (aq ) =a?.

This shows that a € F,q, as desired. Note that as a consequence of this, we see that the
composite FgmFr = Fi, where [ = mr/d = lem(m, 7).

To prove the second statement, let P be a place of F' of degree m, and let S be the set
of points of X whose corresponding place is P. This set has m elements. The places of F,
lying over P are exactly the places corresponding to points in S. However, each such place
of F, corresponds to [/r points; this is because if p is a point in S, then its residue field
Fq(p) with respect to F, has degree [Fy-(p) : For] = [F,
Now, | = mr/d, so l/r = m/d. Therefore, if P{,..., P/ are the places of F, lying over P,

1 : Fyr] = 1/r, as mentioned above.

each corresponds to m/d points of S, and every point of S corresponds to exactly one of the
P!. Therefore, there are d such P/. This finishes the proof. O

To help prove the following proposition, we need a result about roots of unity. Let r and
m be positive integers and set d = ged(r, m). Then

(;L'r/d — 1)d = H({L’ — (Sm)’

)

where the product runs over the r-th roots of unity in C. That is, d ranges over the elements
{exp(2mi/r) : 0 <7 < r}. To see why this equation is true, we note that both sides are monic
polynomials of degree r. It is enough to see that they have the same roots. The roots of
the left hand side are precisely the r/d-th roots of unity. If ¢ is an r-th root of unity, then
(6™)"'* = 7™/ = 1. Conversely, any r/d-th root of unity is of the form 6™ for some r-th
root of unity 4, as a group theory exercise shows. If we substitute x = ¢~ and then multiply
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both sides by ¢, a little algebra will show that

(L=t =TT - o)™

§

We will use this in the following proposition.

Proposition 7.12. Let Z,(t) be the Z-function associated to F,. Then Z.(t") = [[5 Z(dt),
where § runs over all r-th roots of unity in C.

Proof. Since two complex analytic functions are equal if they agree on a nontrivial open disk
of the complex plane, and because both sides of the equation above are rational functions in
t, it is enough to prove the equality for |[t| < ¢~1. We will write P’ | P if P"NF = P. In the
region |t| < ¢~!, the product representation yields

ZT<tr): H (1 trdeg P’ H H trdeg P/

P'ePy, PePr P/|P

For a fixed P € Pp, let m = deg(P) and d = ged(r, m). We then have, by the lemma,
H (1 _ trdeg(P’)) _ (1 . trm/d)d
P/|P
H (1 — (ot)%sl)

)

Therefore,

ZT(tr) _ H H 5t deg(P ) -1

PePr 6

=TI II ()= ®) " =T 2(0).

6 PePp

Corollary 7.13. If 0 = gcd {deg(E) : E € Dp}, then 0 = 1.

Proof. Set r = 0. Then (1 — (6¢)%8(")) = 1 — ¢4°8(") gince deg(P) is a multiple of 9, so
69e(P) — 1. Therefore,

z6t)y= 1] (1 — (6t)%sP)) " = 11 (1 — 19 = 7Z(1).

PePp PePp

Therefore, by the proposition, Z.(t") = Z(t)". By the description of Z(t) in Proposition
7.10, applied to Z,(t), the Z-function associated to F,/F,-, we see that Z,(¢") has a simple

74



pole at t = 1. However, Z(t)" has a pole of order r at ¢t = 1. Thus, as Z,.(t") = Z(t)", we see
that » = 1. In other words, 0 = 1. O]

This corollary is not true if the base field is infinite. For example, if F'is the function
field of the curve x? + 3% 4+ 22 = 0 over R, then the curve has no R-rational point. Since
the residue field of any point is a finite extension of R, each residue field must then be C.
Therefore, the degree of every place is 2, and so 0 = 2 for this function field.

Corollary 7.14. Any function field F'/F, of genus 0 is a rational function field, and
1
(1=8)(1—qt)

Proof. Since 0 = 1, there is a divisor E of degree 1. By Riemann-Roch, dim(F) = 2, so
L(E) is nonzero. Taking a nonzero f € L(E), we have (f) + E > 0, a positive divisor of
degree 1. Then (f) + E = P for some single place P, which is then necessarily of degree 1.
Therefore, F'/F, has a place of degree 1. We have proven that a function field of genus 0

Z(t) =

with a rational point is a rational function field, which says that F' is isomorphic to F,(z).
Finally, from Proposition 7.10, we have

1 q 1 1 q 1
Z(t) = - — -
) q—l(l—(qt)8 1—75‘7) q—1<1—qt 1—t>

1
= aq)(I—t)

as a little algebra shows. O

Corollary 7.15. If F/F, has genus g > 1, then Z(t) = F(t) + G(t), where

1 .
Fi)=—— Y i)
0<deg([C])<2g—2

h @t 1
G(t>_q—1(1—qt _1—t)'

The following result is an analogue of the functional equation mentioned at the beginning

and

of this chapter. We will use the functional equation to get information about the zeros of

Z(t).
Proposition 7.16. If Z(t) is the Z-function of F//IF,, then

Z(t) = ¢* "2 Z(1/qt).
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First suppose that g = 0. Then Z(t) = 1/(1 —t)(1 — qt). Therefore,

q—lt—Q

(1—(gt)™)(1 —q(qt)™)
1 1

(gt =)t —=1) (1 —=t)(1—qt)

Next, suppose that g > 1. We write Z(t) = F(t) + G(t) as earlier. Let C' be a canonical
divisor. Recall that deg(C') = 2g — 2. Then, by the Riemann-Roch theorem,

(q . 1)F(t) _ Z qdim(E)tdeg(E)
0<deg([E])<29—2

_ Z qdeg(E)—i—l—g+dim(C’—E)tdeg(E)
0<deg([E])<29—2
_ qg—1t29—2 Z qdeg(E)—(2g—2)+dim(C—E)tdeg(E)—(2g—2)

0<deg([E])<29—2

¢ Z(1/qt) =

If £ is a divisor with 0 < deg(C) < 2g — 2, then deg(C — E) = deg(C) — deg(E) =
29 — 2 — deg(F), and so 0 < deg(C — E) < 2¢g — 2. Furthermore, by Riemann-Roch,
dim(C — E) = deg(C — E)+1— g+ dim(E). Moreover, as [E] ranges over divisors of degree
between 0 and 2g — 2, so does [C' — E]. Therefore, setting D = C' — E, we have

(q—1DF(t) = qo 1?92 Z ¢4 (D)—deg(D) 4= deg(D)
0<deg([D])<29—2

) 1 deg(D)
qg—thQ—Z Z qdlm(D) (_)
0<deg(|D]) <292 qt

= ¢ I F(1/qt).

Next, for G(t), we have, by the corollary,

g—1,2g—2 o h o[ o] 201 1 1
g = e <q () <1—q<qt>1>‘<l—<qt>l>)

h (1 1 g1t
g1 (f(l -t (- (qt)1)>
h 1 qIt?91
q—1 (t—l a qt—l) = G

Therefore, ¢ 't?972Z(1/qt) = Z(t).
We can phrase the functional equation in terms of the zeta function ((s). Recall that
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((s) = Z(q*®). Substituting ¢t = ¢~* in the functional equation yields

() =" g ) Z(¢" ") = ¢ a7 ¢(1 —s)
— glo=N(1=29)¢ (1—3s).

In this case, unlike the classical case, we have no “trivial zeros.” Also, if s is a zero of ((s),
then sois 1 — s.

The function Z(t) is a rational function with denominator (1 —¢)(1 — ¢t). We work with
the numerator of Z(t).

Definition 7.17. The polynomial L(t) = (1 — t)(1 — qt)Z(t) is called the L-polynomial of
F/F,.

By the previous two corollaries, we see that L(t) = 1 if the genus of F//F, is 0 and that
in any case, deg(L(t)) < 2g; this comes from the fact that F'(¢) is a polynomial of degree at
most 2g — 2, and G(t) is a rational function of degree 2g — 2. Thus, the degree of Z(t) is at
most 2g — 2. We will see that much information is encoded in this polynomial. Note that
Z(t) is determined by L(t), as

L(t)
T- 01— qt)

Therefore, L(t) encodes all the information about the numbers A,, that Z(t) encodes.

Z(1) =

Theorem 7.18. Let L(t) be the L-polynomial of the function field F/F,.
1. L(t) has coefficients in Z, and deg(L(t)) = 2g.
2. L(t) = ¢ot* L(1/qt);
3. L(1) = h, the class number of F//F,;

4. If L(t) = ag + art + - - - ag,t?9, then ag = 1, asy = ¢, and a; = N — (¢ + 1), where N
1s the number of places of Pr of degree 1.

Proof. If the genus g = 0, then L(t) = 1, and the result is trivial in this case. We thus
assume that g > 1. Since L(t) = (1 —t)(1 — qt) Y.~ , Ant", the polynomial L(t) is a power
series in ¢t with integer coefficients. Thus, its coefficients as a polynomial are the same
integer coefficients. We have already remarked that deg(L(t)) < 2g. When we prove that
the coefficient ay, = ¢9, we will have deg(L(t)) = 2g.

For the functional equation, we have

Z(t) = ¢ 172 Z(1/qt).
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Therefore,

L(t) = (1 )1 - 1) Z(t) = (1 — 1)(1 - qt)g® "> Z(1/qt)

_ _ _ g—1,29—2 L(l/Qt)
=(1—t)(1—qt)g" 't (1= (gt) (1 = q(gt)Y)
— g—1,2g—2 L/at)
=(1—t)(1—qt)g? 't (1—qg (1 -t

_ 9429 L<1/qt>

= (1 —1t)(1 — qt)¢t (gt — D)t — 1)

= "9 L(1/qt).

This proves the functional equation.
To prove (3), since Z(t) = F(t) + G(t), we may write

h
Lit)=1—-t)(1—q)F(t) + 1 (¢t~ (1 —t) — (1 — qt))
by our description of G(t). Since F(t) is a polynomial, F'(1) is defined, and this formula
then yields
h

=—(—(1—-¢q)) =h.

—-(-0)

Finally, write L(t) = ag+ ait + - - + agyt®. From L(t) = (1 —t)(1 —qt) > o2, Apt™, if we
multiply this out, we see that ag = Ay and a; = A; — (¢ + 1). We have noted earlier that A,
is the number of places of degree 1; in other words, A; = N. Therefore, a; = N — (¢ + 1).

L(1)

Also, Ay = 1 since the only positive divisor of degree 0 is 0. Thus, ap = 1. Finally, the
functional equation yields

L(t) = a9t L(1/at) = a9t%9 T
(t) = ¢"t¥L(1/qt) = q <a0+qt+ S

a
29 E e a9 aggtt?.

¢ ¢!
Equating the constant terms gives ay = ag,/q?, S0 agy = apq? = ¢. This completes the

proof. O

The polynomial L(t) has degree 2g. If we work over C, then the fundamental theorem of
algebra says that we can factor L(¢) into linear factors. It is more convenient to work with
the reciprocals oy, . .., ay, of the roots of L(t). Since the leading coefficient of L(t) is ¢9, we
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write

29 29
Liy=¢'[[tt—a;") = ][ —ai'(1 - ait)
i=1 =1
¢
= 1— o4t
s 1 )

Now, since the constant term of L(t) is 1, we see that the coefficient in front of the product

is 1. Therefore,
2g

L(t) = [ (1 = ast).

i=1
Corollary 7.19. If N is the number of places of degree 1 in F, then N = q+1— 322, ;.

Proof. This follows immediately from L(t) = [[(1 — ait) = ag + a1t + -+ + ag,t*? and
a; = N —(g+1), once we multiply out the product and gather together the linear terms. [J

From this corollary, in order to determine the number of rational points of F'//IF,, we need
to know about the reciprocals of the roots of L(t). The Riemann hypothesis for function
fields of curves over finite fields, proved by André Weil in 1941, gives the needed information
about the o;.

Theorem 7.20 (Hasse-Weil). The roots of the Riemann zeta function ((s) lie on the line
Re(s) = 1/2. Therefore, if ay, ..., a4 are the reciprocals of the roots of L(t), then |os| = (/q.

Because of time constraints, we will not prove this theorem. However, to relate the two
statements of the theorem, recall that ((s) and Z(t) are related by the equation (p(s) =
Z(q~*). Furthermore, since

L(t)
(1—=t)(1—qt)’
the roots of L(t) are the zeros of Z(t). So, if s is a zero of (p(s), then Z(¢~°) = 0. If we
write s = 1/2 + yi, then

Z(t) =

g = e~ n(@)s — o—In(q)(1/2+yi)

_ 6—1/21nq6—yln(q)'i.
Therefore, |¢~°| = ‘6*1/21nq‘ = ¢~ Y/?; recall that e = cos@ + isin#, so ‘ei9| =1 for any 6.
Thus, a root of L(t) has absolute value 1/,/g, so any a; has absolute value /3.

Corollary 7.21 (Hasse-Weil Bound). If N is the number of places of F//F, of degree 1,
then

IN — (¢ +1)| <294

79



Proof. We have N = ¢+ 1 — 327, a;. Therefore,

As we have seen, Hermitian curves attain this bound, so this is in general the best one can
do. O
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