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Recap

Throughout this unit K = Fq, where q = pm for some prime p and
m ≥ 1. We will consider a function field F/K with genus g and prime
divisors P.

The group of divisors is denoted as D. The group of principal divisors of
F/K is denoted as

P =
{

(x) | x ∈ F×
}
,

and C = D/P is called the divisor class group.
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Preliminaries

Definition 1

For m ∈ Z define

Sm = {p ∈ P | deg p ≤ m},
Cm = {a ∈ D | deg a = m}/P.

Further, let
h = |C0|.

Lemma 2

For every m ∈ Z the sets Sm, Cm as well as the set

Tm = {a ∈ D | a ≥ 0 and deg a ≤ m}

are finite. In particular, h <∞.
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Preliminaries

Proof.

Sm = {p ∈ P | deg p ≤ m}

First, if F = K(x) then Sm \ p∞ is in bijection with irreducible
polynomials of degree ≤ m over K. Hence, as K is finite, |Sm| <∞.

For a general function field F/K, take x ∈ F \K. Let p ∈ Sm and consider
the place q of K(x)/K which lies under p. As

K ⊆ K(x)q ⊆ Fp

we have that deg q ≤ deg p ≤ m.

Therefore, with every p ∈ Sm we can associate a place q of K(x)/K of
degree at most m. As there are only finitely many places of F/K above
any given place of K(x)/K, we conclude that |Sm| <∞.

That Tm is finite readily follows.
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Preliminaries

Proof.

Cm = {a ∈ D | deg a = m}/P

We turn to prove that |Cm| <∞. Assume first m ≥ 2g , and take
[a] ∈ Cm. By Riemann-Roch,

dim a = deg a− g + 1 ≥ 1

and so ∃x ∈ L(a) \ {0}. Hence, a′ , (x) + a satisfies a′ ≥ 0 and
[a′] = [a]. This establishes a one to one map Cm ↪→Tm, and so
|Cm| ≤ |Tm| <∞.

For m < 2g , let b ∈ D be such that deg b , d ≥ 2g −m. Then, the
bijection

{a ∈ D | deg a = m} → {a′ | deg a′ = m + d}
a 7→ a + b

induces a one to one map Cm ↪→Cd+m, and the proof follows.
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∂

Definition 3

Define the del of a function field F/K as

∂ = min {deg b | b ∈ D and deg b > 0} .

We will soon prove that ∂ = 1, namely, that every function field has a
degree one divisor. For now, we start by establishing

Claim 4

For every n ∈ Z the following hold:

1 ∃b ∈ D with deg b = n iff ∂ | n;

2 |Cn| = h if ∂ | n and otherwise Cn = ∅; and

3 ∂ | 2g − 2.
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∂

Proof.

1 if b ≥ 0 is such that deg b = ∂ then kb is a divisor of degree k∂ for
every k ∈ Z. In the other direction, take any a ∈ D, and let
n = deg a. Then, n = k∂ + r for some k and 0 ≤ r < ∂, and

deg(b− ka) = r .

Unless r = 0, this stands in contradiction to the minimality of ∂.

2 By (the proof of) Lemma 2, Cn is in bijection with C0 whenever
there exists a degree-n divisor, and so in such case |Cn| = |C0| = h.
If no such divisor exists then, of course, Cn = ∅.

3 Lastly, Item 3 follows from Item 1 by taking a canonical divisor
whose degree, recall, is 2g − 2.
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Preliminaries

Lemma 5

Let F/K be a function field, and a ∈ D. Then,

|{b ∈ D | b ≥ 0, b ∼ a}| =
qdim a − 1

q − 1
.

Proof.

The proof follows as there is a bijection between

X = {(x) | x ∈ L(a) \ {0}}

and the set on the LHS. Indeed, if b ∼ a then there exists x ∈ F× such
that b = a + (x). For b ≥ 0, this means that x ∈ L(a). In the other
direction, if 0 6= x ∈ L(a) then we can define b = a + (x) which is indeed
non-negative and, clearly, b ∼ a.

The proof follows as X has the required size.
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Preliminaries

One can reformulate Lemma 5 as saying that for every C ∈ C,

|{b ∈ C | b ≥ 0}| =
qdimC − 1

q − 1
, (1)

where recall dimC is the common value dim b of all divisors b ∈ C .

Definition 6

For n ≥ 0 define

An = |{b ∈ D | deg b = n, b ≥ 0}|.

As a corollary of Equation 1, we obtain

An =
∑
C∈Cn

qdimC − 1

q − 1
. (2)
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Preliminaries

In particular, by the Riemann-Roch Theorem and by Claim 4, for every
n > 2g − 2,

An =

{
h · q

n+1−g−1
q−1 if ∂ | n,

0 otherwise..
(3)

Definition 7

For a ∈ D we define the norm of a by

Na = qdeg a.

Note that

1 N(a + b) = Na ·Nb, and

2 For p ∈ P, Np = |Fp|.
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The Zeta and Zi functions of a function field

Definition 8

The Zeta Function of a function field F/K is the complex-valued function

ζF/K(s) =
∑

0≤a∈DF/K

1

(Na)s
=

∑
0≤a∈DF/K

q−s deg a. (4)

Setting t = q−s , we write Z(t) = ζ(s), and call it the Zi function, namely,

Z(t) =
∑

0≤a∈DF/K

tdeg a =
∞∑
n=0

Ant
n. (5)

So Z is the generating function for the sequence A0,A1, . . ..

Equation 4 should be compared with Riemann’s classical zeta function

ζ(s) =
∞∑
n=1

1

ns
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The Zeta and Zi functions of a function field

Theorem 9

Z(t) converges for |t| < q−1 (hence, ζ(s) converges for Re s > 1).
Moreover, for such t,

1 If g = 0 then

Z(t) =
1

q − 1

(
q

1− (qt)∂
− 1

1− t∂

)
∈ Q(t).

2 For g ≥ 1,

Z(t) =
1

q − 1
(F (t) + hG (t))

where

F (t) =
∑
C∈C

0≤deg C≤2g−2

qdimC tdeg C ∈ Q[t]

G (t) =
q1−g (qt)2g−2+∂

1− (qt)∂
− 1

1− t∂
∈ Q(t).
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The Zeta and Zi functions of a function field

Proof.

The “hence” assertion follows by observing that |q−s | = q−Re s and so

Re s > 1 ⇐⇒ |q−s | < q−1.

The case g = 0. In the problem sets, using Riemann-Roch, you proved
that in genus 0 function fields every degree 0 divisor is principle, and so

h = |C0| = 1.

Hence, by Equation 3,

Z(t) =
∞∑
n=0

Ant
n =

∞∑
k=0

A∂kt
∂k =

∞∑
k=0

q∂k+1 − 1

q − 1
t∂k

=
1

q − 1

(
q
∞∑
k=0

(qt)∂k −
∞∑
k=0

t∂k

)

=
1

q − 1

(
q

1− (qt)∂
− 1

1− t∂

)
.
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The Zeta and Zi functions of a function field

Proof.

The case g > 0. By Equation 2 and by Riemann-Roch,

Z(t) =
∞∑
n=0

Ant
n =

∞∑
n=0

∑
C∈Cn

qdimC − 1

q − 1
· tn

=
1

q − 1

(
2g−2∑
n=0

∑
C∈Cn

qdimC tn +
∞∑

n=2g−1

∑
C∈Cn

qn+1−g tn −
∞∑
n=0

∑
C∈Cn

tn

)

=
1

q − 1
(F (t) + hG (t)) ,

where

F (t) =

2g−2∑
n=0

(∑
C∈Cn

qdimC

)
tn =

∑
C∈C

0≤deg C≤2g−2

qdimC tdeg C
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The Zeta and Zi functions of a function field

Proof.

and using Claim 4 we get that

G (t) =
∞∑

n=2g−1

|Cn|
h

qn+1−g tn −
∞∑
n=0

|Cn|
h

tn

= q1−g
∞∑

n=2g−2+∂
∂|n

(qt)n −
∞∑
n=0
∂|n

tn

=
q1−g (qt)2g−2+∂

1− (qt)∂
− 1

1− t∂
.
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The Zeta and Zi functions of a function field

Recap.

Z(t) =
1

q − 1
(F (t) + hG (t))

where F (t) ∈ Q[t] and

G (t) =
q1−g (qt)2g−2+∂

1− (qt)∂
− 1

1− t∂
.

As a corollary we see that Z(t) is defined for |t| < q−1. Moreover, Z(t)
can be extended (in the sense of analytic continuation) to a rational
function on C, where the unique poles of the extension are whenever
t∂ = 1 and t∂ = q−∂ . Furthermore, these poles are simple.

Therefore, ζ(s) as defined in Equation 4 converges for Re (s) > 1.
However, by the continuation of Z(t), we see that ζ(s) can be extended
to a holomorphic function on C excluding the lines Re (s) = 0 and
Re (s) = 1.
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Euler-like product formula

Theorem 10

For Re (s) > 1 and |t| < q−1, we can write ζ(s) and Z(t) as the
following infinite absolutely converging products:

Z(t) =
∏
p∈P

1

1− tdeg p

ζ(s) =
∏
p∈P

1

1− (Np)−s
.

This should be compared with Euler product formula

∞∑
n=1

1

ns
=

∏
p prime

1

1− p−s
.
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Euler-like product formula

Proof.

The formula for the ζ function follows by the one for Z as Np = qdeg p.

It can be shown using standard arguments that the RHS of the above
equation involving Z(t) converges absolutely for |t| < q−1. This is mostly
because ∑

p∈P
|tdeg p| ≤

∞∑
n=1

Ant
n <∞.

Due to the absolute convergence, we can write
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Euler-like product formula

Proof.

∏
p∈P

1

1− tdeg p
=
∏
p∈P

∞∑
k(p)=0

(tdeg p)
k(p)

=
∑
k

∏
p∈P

tk(p) deg p

=
∑
k

t(
∑

p k(p) deg p)

=
∑
a≥0

tdeg a = Z(t),

where we iterate over all k in P→ N with finite support.

As a corollary of Theorem 10, we have that for Re (s) > 1, ζ(s) 6= 0.
Similarly, for |t| < q−1, Z(t) 6= 0.

Gil Cohen The Riemann Hypothesis over Function Fields aka The Hasse-Weil Bound



Overview

1 Preliminaries

2 The Zeta and Zi functions of a function field

3 Schmidt’s Theorem, ∂ = 1

4 The functional equation

5 The Riemann Hypothesis over Function Fields

Gil Cohen The Riemann Hypothesis over Function Fields aka The Hasse-Weil Bound



Schmidt’s Theorem, ∂ = 1

Recall that in this unit we let K = Fq. K has a unique degree-r extension
which is denoted by Kr . We denote the corresponding constant function
field extension, KrF/Kr by Fr/Kr .

From a prior unit (which we haven’t covered), we know that the genus of
Fr is the same as that of F. Moreover, if a is a divisor of F/K, we can
view it as a divisor of Fr/Kr (vie the conorm), where the degree and
dimension of a remain unchanged.

Lemma 11

Let p be a prime divisor of F/K with degree deg p = m. Let P1, . . . ,Pd

be all the prime divisors of Fr/Kr lying above p, with possible repetitions.
Then, P1, . . . ,Pd are all distinct. Moreover, for every i ∈ [d ],

degPi =
m

gcd(r ,m)
,

and d = gcd(r ,m).
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Schmidt’s Theorem, ∂ = 1

Proof.

We saw that as Fr/F is a separable constant field extension, p is
unramified in Fr .

Fix i ∈ [d ]. By a theorem from the constant function field extensions
unit,

(Fr )Pi = KrFp

and so

degPi = [KrFp : Kr ] = [Fp : (Fp ∩ Kr )]

=
[Fp : K]

[(Fp ∩ Kr ) : K]
=

deg p

gcd(r ,m)
.

Now, deg p = d degPi , and so

d = gcd(r ,m).
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Schmidt’s Theorem, ∂ = 1
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Schmidt’s Theorem, ∂ = 1

Theorem 12

Let Zr be the Zi function that corresponds to Fr/Kr . Then,

Zr (t
r ) =

∏
ξr=1

Z(ξt).

Proof.

As on both sides we have meromorphic functions, it suffices to prove
equality for |t| < q−1. By Theorem 10,

Zr (t
r )−1 =

∏
p∈P

∏
P/p

(1− (tr )degP)

whereas ∏
ξr=1

Z(ξt) =
∏
p∈P

∏
ξr=1

(1− (ξt)deg p).
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Schmidt’s Theorem, ∂ = 1

Proof.

Thus, it suffices to prove that for every p,∏
P/p

(1− (tr )degP) =
∏
ξr=1

(1− (ξt)deg p).

Let m = deg p and d = gcd(r ,m). By Lemma 11 it suffices to prove that(
1− (tr )

m
d

)d
=
∏
ξr=1

(1− (ξt)m).

Write k = r
d . Note that for ξ a primitive r -th root of unity it holds that

ξm is a primitive k-th root of unity. Thus, the map ξ 7→ ξm is a surjective
homomorphism from the group of r -roots of unity to the group of
k-roots of unity. In particular, every element in the range has preimage of
size r

k = d .
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Schmidt’s Theorem, ∂ = 1

Proof.

Hence, the RHS is given by the d-th power of∏
ηk=1

(1− ηtm).

Therefore it suffices to prove that

1− tkm =
∏
ηk=1

(1− ηtm). (6)

This is indeed the case as the k-th roots of unity are exactly to roots of
the polynomial

T k − 1 =
∏
ηk=1

T − η,

and substituting t−m for T implies Equation 6.
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Schmidt’s Theorem, ∂ = 1

Theorem 13 (Schmidt’s Theorem)

∂ = 1

Proof.

By Equation 3

Z(t) =
∞∑
k=0

A∂kt
∂k .

Thus, for ξ a ∂-root of unity, Z(ξt) = Z(t). By Theorem 12,

Z∂(t∂) = Z(t)∂ .

The proof then follows as at t = 1, the LHS has a simple pole whereas
the RHS has a pole of order ∂.
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Schmidt’s Theorem, ∂ = 1

Corollary 14

If g = 0 then F/K is the rational function field and

Z(t) =
1

(1− t)(1− qt)
.

For g ≥ 1, we have that

Z(t) =
1

q − 1
(F (t) + hG (t)) ,

where

F (t) =
∑
C∈C

0≤deg C≤2g−2

qdimC tdeg C ∈ Q[t]

G (t) =
qg t2g−1

1− qt
− 1

1− t
∈ Q(t).
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Schmidt’s Theorem, ∂ = 1

Proof.

The case g ≥ 1 follows immediately by Theorem 9 and since we now
know ∂ = 1.

As for the case g = 0, since ∂ = 1, F/K has a degree-one divisor and so,
by a result you proved in the problem sets, F/K must be the rational
function field.

Corollary 14 implies that

Z(t) =
L(t)

(1− t)(1− qt)

for some L(t) ∈ Q[t] a polynomial of degree at most 2g .
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The function equation

Theorem 15

For every t (namely, treated as formal power series),

Z(t) = qg−1t2g−2Z

(
1

qt

)
.

Proof.

This assertion is easy to verify for g = 0, so assume g ≥ 1. It suffices to
prove the functional equation for F (t) and G (t). To verify that

G (t) =
qg t2g−1

1− qt
− 1

1− t

satisfies

G (t) = qg−1t2g−2G

(
1

qt

)
is a straightforward calculation.
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The functional equation

Proof.

So we turn to show the same for F (t). We have that

qg−1t2g−2F

(
1

qt

)
= qg−1t2g−2

∑
C∈C

0≤deg C≤2g−2

qdimC

(
1

qt

)deg C

=
∑
C∈C

0≤deg C≤2g−2

qdimC−deg C+g−1t2g−2−deg C .
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The functional equation

Proof.

Let W be the canonical class. By Riemann-Roch,

degW = 2g − 2,

dim(W − C ) = dimC − degC + g − 1.

So we can continue and write

· · · =
∑
C∈C

0≤deg C≤2g−2

qdimC−deg C+g−1t2g−2−deg C

=
∑
C∈C

0≤deg C≤2g−2

qdim(W−C)tdeg(W−C).

Observe that as C ∈ C iterates over all divisors of degree 0, 1, . . . , 2g − 2,
so is W − C , and so the RHS is indeed F (t).
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Corollaries

Now that we have established the functional equation,

Z(t) = qg−1t2g−2Z

(
1

qt

)
.

we will draw interesting corollaries.

First, denote by N the number of rational prime divisors. Note that

N = A1 = | {b | deg b = 1 and b ≥ 0} |.

Note also that A0 = 1.
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Corollaries

We further denote by Z0(t) the Zi function of Fq(x)/Fq. By Theorem 9
and since ∂ = 1 (Theorem 13), we have that

Z0(t) =
1

(1− t)(1− qt)

But

Z(t) =
L(t)

(1− t)(1− qt)

and so

L(t) =
Z(t)

Z0(t)
.

From this we get a functional equation for the L-function

L(t) =
Z(t)

Z0(t)
=

qg−1t2g−2Z( 1
qt )

q−1t−2Z0( 1
qt )

= qg t2gL

(
1

qt

)
.
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Corollaries

L(t) = qg t2gL

(
1

qt

)
.

We know that deg L ≤ 2g . Write

L(t) = a0 + a1t + · · ·+ a2g t
2g .

Then,

2g∑
i=0

ai t
i = qg t2g

2g∑
j=0

aj(qt)−j =

2g∑
j=0

ajq
g−j t2g−j =

2g∑
i=0

a2g−iq
i−g t i

Comparing coefficients, we see that for every i = 0, 1, . . . , 2g ,

a2g−i = aiq
g−i .
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Corollaries

Recap

L(t) = a0 + a1t + · · ·+ a2g t
2g and a2g−i = aiq

g−i .

Now,

L(t) = (1− t)(1− qt)Z(t)

= (1− t)(1− qt)(A0 + A1t + · · · )
= A0 + (A1 − (q + 1)A0)t + · · ·
= 1 + (N − (q + 1))t + · · · .

Therefore,

a0 = 1

a1 = N − (q + 1)

a2g = qg .

In particular, deg L = 2g .
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Corollaries

To recap, we proved the following corollary

Corollary 16

The L function of a function field over Fq with genus g is of degree 2g
taking the form

L(t) = 1 + (N − (q + 1))t + · · ·+ a2gq
g t2g .

Moreover, for every i = 0, 1, . . . , 2g,

a2g−i = aiq
g−i .

For example, for an elliptic curve over Fq, g = 1 and so

L(t) = a0 + a1t + a2t
2

= 1 + (N − (q + 1))t + qt2.
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The roots of the L function

Write

L(t) =

2g∏
i=1

(1− ωi t),

where ω−11 , . . . , ω−12g are the roots of L. We have that

Theorem 17

qg =

2g∏
i=1

ωi

N − (q + 1) = −
2g∑
i=1

ωi .

Moreover, we can order the ωi -s so that for every i = 1, 2, . . . , g,

ωiωg+i = q.
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The roots of the L function

Proof.

As

L(t) =

2g∏
i=1

(1− ωi t),

we have that
2g∏
i=1

ωi = a2g = qg .

Moreover,

−
2g∑
i=1

ωi = a1 = N − (q + 1).
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The roots of the L function

Proof.

Recall again that

L(t) =

2g∏
i=1

(1− ωi t),

Now,

L(t) = qg t2gL

(
1

qt

)
=

(qt)2g∏2g
i=1 ωi

2g∏
i=1

(
1− ωi

qt

)

=

2g∏
i=1

(
qt

ωi
− 1

)
=

2g∏
i=1

(
1− qt

ωi

)
,

and so the sequence ( q
ωi

)i∈[2g ] is a permutation of the sequence (ωi )i∈[2g ].
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The roots of the L function

Proof.

After rearranging, noting that the permutation can have fixed points
corresponding to values ±√q, we can write the ωi -s as

ω1,
q

ω1
, . . . , ωk ,

q

ωk

for some 0 ≤ k ≤ g and with additional m copies of
√
q and n copies of

−√q.

To conclude the proof, we ought to prove that both m and n are even.
But indeed,

2k + m + n = 2g ,

and so it suffices to prove that n is even which follows since

qg =

2g∏
i=1

ωi = qkqm/2(−1)nqn/2 = (−1)nqg .
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The Riemann Hypothesis over Function Fields

We are finally ready to state the Riemann Riemann Hypothesis over
function fields which is in fact a theorem(!) - the fundamental
Hasse-Weil Theorem.

Theorem 18

Using the notation above, the following three equivalent statements hold:

1 The roots of ζ(s) all lie on the line s = 1
2 in the complex plane.

2 The roots of Z(t) all lie on the circle of radius |t| = q−1/2.

3 |ωi | =
√
q for all i ∈ [2g ].
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The Riemann Hypothesis over Function Fields

An important corollary is

Theorem 19

|N − (q + 1)| ≤ 2g
√
q.

Proof.

Recall that

−
2g∑
i=1

ωi = a1 = N − (q + 1),

and so

|N − (q + 1)| ≤
2g∑
i=1

|ωi | = 2g
√
q.
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The Riemann Hypothesis over Function Fields

Given the unit on constant field extensions (which takes 2–3 hours to
cover), we will need an additional 3–4 hours to prove the Riemann
Hypothesis for function fields. This means we’re not too far! However,
since time is running short, I’ll illustrate some components of the proof
by proving a weaker yet still non-trivial variant.

Theorem 20

For every r ∈ N,

Lr (t) =

2g∏
i=1

(1− ωr
i t).

In particular, RH holds for F/K iff it holds for Fr/Kr .
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The Riemann Hypothesis over Function Fields

Proof.

By Theorem 12,

Zr (t
r ) =

∏
ξr=1

Z(ξt),

and so

Lr (t
r ) =

Zr (t
r )

(Z0)r (tr )
=

∏
ζr=1 Z(ζt)∏
ζr=1 Z0(ζt)

=
∏
ζr=1

L(ζt) =
∏
ζr=1

2g∏
i=1

(1− ωiζt) =

2g∏
i=1

(1− ωr
i t

r ),

where the last equality follows by the identity T r − 1 =
∏
ζr=1 (T − ζ),

substituting T = ω−1i t−1.

Clearly then,
|ωi | =

√
q ⇐⇒ |ωr

i | =
√
qr .
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The Riemann Hypothesis over Function Fields

Theorem 21

If ∃c ∈ R such that for all r ∈ N

|Nr − (qr + 1)| ≤ cqr/2

then RH holds for F/K.

Proof.

Consider the function

M(t) = −
2g∑
i=1

1

1− ωi t
∈ C(t).

This is a holomorphic function at a neighborhood of 0. Denote by R its
convergence radius, noting that the only singularity (indeed poles) it has
are at ω−1i for i = 1, . . . , 2g , hence

R = min
i
|ω−1i |.

Gil Cohen The Riemann Hypothesis over Function Fields aka The Hasse-Weil Bound



The Riemann Hypothesis over Function Fields

Proof.

On the other hand, by Taylor expanding M(t) around 0, we have that

M(t) =
∞∑
r=0

(
−

2g∑
i=1

ωr
i

)
tr

By Theorem 17 and Theorem 20

Nr − (qr + 1) = −
2g∑
i=1

ωr
i .

Thus,

M(t) =
∞∑
r=0

(Nr − (qr + 1))tr .
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The Riemann Hypothesis over Function Fields

Proof.

M(t) =
∞∑
r=0

(Nr − (qr + 1))tr .

Per our assumption,

∃c ∀r |Nr − (qr + 1)| ≤ cqr/2,

this series convergence for |t| < q−1/2. Hence,

min
i
|ω−1i | = R ≥ q−1/2,

and so |ωi | ≤
√
q for all i ∈ [2g ]. But by Theorem 17,

∏
i ωi = qg , and

so |ωi | =
√
q for all i ∈ [2g ], namely, RH holds for F/K.
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The Riemann Hypothesis over Function Fields

With these results, we prove the following weak version of RH.

Theorem 22

Let F/K be a function field over Fq such that q is an even power of a
prime, satisfying q > (g + 1)4. Assume further that F/K has a prime
divisor of degree 1. Then,

N − (q + 1) < (2g + 1)
√
q.

Proof.

Denote the degree 1 prime divisor by p, and let

q′ =
√
q

m = q′ − 1

n = q′ + 2g

r = m + q′n
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The Riemann Hypothesis over Function Fields

Proof.

q′ =
√
q m = q′ − 1

n = q′ + 2g r = m + q′n

Then

r = (q′ − 1) + q′(q′ + 2g)

= (2g + 1)q′ + (q′)2 − 1

= (2g + 1)
√
q + q − 1

Hence, the bound we wish to prove

N − (q + 1) < (2g + 1)
√
q

can be expressed as
N − 1 ≤ r .
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The Riemann Hypothesis over Function Fields

Proof.

For k ∈ N let

Ik = {0 ≤ i ≤ k | L((i − 1)p) 6= L(ip)} ,

and for i ∈ Ik denote by ui and element in L(ip) \ L((i − 1)p). As

dimL(ip)− dimL((i − 1)p) = 1

for i ∈ Ik , we have that {ui | i ∈ Ik} is a basis of L(kp).
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The Riemann Hypothesis over Function Fields

Claim 23

The set {ui | i ∈ Im} (recall m = q′ − 1) is linearly independent when the
coefficients are taking from q′ powers of F (denoted Fq′).

Proof.

Otherwise, there is ∅ 6= I ⊆ Im such that∑
i∈I

yq′

i ui = 0,

where yi ∈ F×. Clearly |I | > 1, and therefore there must be i , j ∈ I
distinct such that the corresponding valuations are equal, namely,

q′υp(yi ) + i = υp(yq′

i ui ) = υp(yq′

j uj) = q′υp(yj) + j

and so i ≡ j mod q′, in contradiction to 0 ≤ i , j ≤ m = q′ − 1.
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The Riemann Hypothesis over Function Fields

We turn back to the proof of Theorem 22.

Proof.

As an immediate corollary of Claim 23 we have that the set{
uiu

q′

j | i ∈ Im, j ∈ In
}

is linearly independent over K. Define

L = SpanK(uiu
q′

j | i ∈ Im, j ∈ In)

L′ = L ((mq′ + n)p)

By the above,

dimK L = |Im||In| = dim(mp) dim(np).
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The Riemann Hypothesis over Function Fields

Proof.

Recap.

q′ =
√
q m = q′ − 1

n = q′ + 2g r = m + q′n

and dimK L = |Im||In| = dim(mp) dim(np). Hence, by Riemann-Roch

dimK L ≥ (m − g + 1)(n − g + 1)

= (q′ − g)(q′ + g + 1)

= q − g2 + q′ − g .

Per our assumption,

q′ =
√
q > (g + 1)2 = g2 + 2g + 1

and so
dimK L > q + g + 1

Gil Cohen The Riemann Hypothesis over Function Fields aka The Hasse-Weil Bound



The Riemann Hypothesis over Function Fields

Proof.

As for L′

degL′ = mq′ + n = (q′ − 1)q′ + (q′ + 2g) = q + 2g > 2g − 2.

Thus, by Riemann-Roch,

dimK L′ = (q + 2g)− g + 1 = q + g + 1

Therefore,
dimK L > dimK L′.

To be continued...
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