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Throughout this unit K = [F;, where g = p™ for some prime p and

m > 1. We will consider a function field F/K with genus g and prime
divisors P.

The group of divisors is denoted as D. The group of principal divisors of
F/K is denoted as

P={(x)| xeF*},
and C = D/P is called the divisor class group.
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Preliminaries

For m € Z define

Sm={peP | degp<m},
Cm={a€D | dega=m}/P.

Further, let
h=1Co|.

For every m € Z the sets S,,Cp, as well as the set
Tm={a€D | a>0and dega < m}

are finite. In particular, h < oco.
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Preliminaries

Sm={p P | degp < m}

First, if F = K(x) then Sp, \ poo is in bijection with irreducible
polynomials of degree < m over K. Hence, as K is finite, |Sp| < oo.

For a general function field F/K, take x € F\ K. Let p € S, and consider
the place q of K(x)/K which lies under p. As

K C K(x)q C€Fp

we have that degq < degp < m.

Therefore, with every p € S, we can associate a place q of K(x)/K of
degree at most m. As there are only finitely many places of F/K above
any given place of K(x)/K, we conclude that |Sp,| < .

That T, is finite readily follows.
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Preliminaries

Cm={ae€D | dega=m}/P

We turn to prove that |Cp,| < 0o. Assume first m > 2g, and take
[a] € C1n. By Riemann-Roch,

dima=dega—g+1>1

and so 3x € L£(a) \ {0}. Hence, o’ £ (x) + a satisfies a’ > 0 and
[@/] = [a]. This establishes a one to one map C,, < 7T,,, and so
ICrn| < | T < 0.

For m < 2g, let b € D be such that degb £ d > 2g — m. Then, the

bijection
{a €D | dega=m} — {da’ | dega’ = m+d}
ar—>a+b
induces a one to one map C,, < Cg1pm, and the proof follows. O
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Define the del of a function field F/K as

0 =min{degb | b € D and degb > 0}.

We will soon prove that @ = 1, namely, that every function field has a
degree one divisor. For now, we start by establishing

For every n € 7Z the following hold:
Q b € D with degb = niff 9 | n;
@ |C,| = hif 8| n and otherwise C, = ; and
Q@ J|2g—2.
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@ if b > 0 is such that deg b = 0 then kb is a divisor of degree kO for
every k € Z. In the other direction, take any a € D, and let
n=dega. Then, n= kO + r for some k and 0 < r < 9, and

deg(b — ka) = r.

Unless r = 0, this stands in contradiction to the minimality of 9.

@ By (the proof of) Lemma 2, C, is in bijection with Cy whenever
there exists a degree-n divisor, and so in such case |C,,| = |Co| = h.
If no such divisor exists then, of course, C, = 0.

@ Lastly, Item 3 follows from Item 1 by taking a canonical divisor
whose degree, recall, is 2g — 2.
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Preliminaries

Let F/K be a function field, and a € D. Then,

qdima -1

{oeD | b20b~a} =T —

The proof follows as there is a bijection between

X ={(x) | x € L(a)\ {0}}

and the set on the LHS. Indeed, if b ~ a then there exists x € F* such
that b = a + (x). For b > 0, this means that x € L(a). In the other
direction, if 0 # x € £(a) then we can define b = a + (x) which is indeed
non-negative and, clearly, b ~ a.

The proof follows as X has the required size. O
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Preliminaries

One can reformulate Lemma 5 as saying that for every C € C,

dim C
q -1

> =
{beC|b=>0} T 1 (1)

where recall dim C is the common value dim b of all divisors b € C.

Definition 6
For n > 0 define

A,=|{beD | degb=n,b >0}
As a corollary of Equation 1, we obtain

qdimC -1

A= T (2)

cec,
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Preliminaries

In particular, by the Riemann-Roch Theorem and by Claim 4, for every

n>2g—2,
h ) qn+17g_1 f@
Ar = { T e 3)

0 otherwise..

Definition 7
For a € D we define the norm of a by

deg a

Na=gq

Note that
@ N(a+b) =Na-Nb, and
@ Forp e P, Np = |F,|.
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Overview

© The Zeta and Zi functions of a function field
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The Zeta and Zi functions of a function field

The Zeta Function of a function field F/K is the complex-valued function

VR LI "

0<a€D¢ /k 0<a€D¢ /i

Setting t = q—*, we write Z(t) = ((s), and call it the Zi function, namely,

Z(t)= Y et = ZAt (5)

0<a€Dk /K

So Z is the generating function for the sequence Ag, Ay, .. ..
Equation 4 should be compared with Riemann’s classical zeta function
(oo}
1
s)=p_ —

ns
n=1
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The Zeta and Zi functions of a function field

Z(t) converges for |t| < g~ (hence, ((s) converges for Res > 1).
Moreover, for such t,

Q /fg =0 then
1 q 1
Q Forg>1, .
Z(t) = ﬁ(F(t)Jr hG(t))
where

F(t) — Z qdim CtdegC c Q[t]
ceC
0<deg C<2g—2
ql—g(qt)2g—2+6 1

G(t) = (g7 1-0 € Q(t).
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The Zeta and Zi functions of a function field

The “hence” assertion follows by observing that |g~*| = g~%¢* and so

Res>1 <+« |qg°|<ql

The case g = 0. In the problem sets, using Riemann-Roch, you proved
that in genus 0 function fields every degree 0 divisor is principle, and so

h=|Co| = 1.

Hence, by Equation 3,
s Ok+1 1

ZA £ —ZAaktak qu—l

k=0

L]_ <qz (qt)ak _ Z t3k>
k=0 k=0

1 q 1
g—1\1—(qt)? 1-—1¢9




The Zeta and Zi functions of a function field

Proof.
The case g > 0. By Equation 2 and by Riemann-Roch,

o o qdimC -1
Z(t):ZA"tn:Z Z T tn
n=0 n=0 CeC, q
1 2g—2 oo
:_< dlmCt + Z an-H g¢n Zztn>
q-1 n=0 CeC, n=2g—1 CEC,» n=0 CeC,
1
— 1 (F(D) + h6(0)

2g—2
_ ( Z qdim C) "= Z qdim Ctdeg C
n=0

CeC, ceC
0<deg C<2g—2
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The Zeta and Zi functions of a function field

and using Claim 4 we get that

n=2g—1 n=0
00 o
g > (@Y
n=2g—2+0 n=0
O|n O|n
- qlfg(qt)2gf2+8 B 1
1—(qt)? 11—t
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The Zeta and Zi functions of a function field

Recap. )
2t) = —1 (F(5) + h6 (1))
where F(t) € Q[t] and
 glE(qr)e 2o 1
CO="T"(gp  1-o

As a corollary we see that Z(t) is defined for |t| < g~1. Moreover, Z(t)
can be extended (in the sense of analytic continuation) to a rational
function on C, where the unique poles of the extension are whenever
t? =1 and t? = g=2. Furthermore, these poles are simple.

Therefore, ((s) as defined in Equation 4 converges for Re(s) > 1.
However, by the continuation of Z(t), we see that ((s) can be extended
to a holomorphic function on C excluding the lines Re (s) = 0 and
Re(s) =1.
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Euler-like product formula

Theorem 10

For Re(s) > 1 and |t| < q~1, we can write ((s) and Z(t) as the
following infinite absolutely converging products:

1
Z(t) = H 1— tdegp
peP

1
“©= e

peP
This should be compared with Euler product formula

=1 1
Zﬁznlf

—s *
n=1 p prime p
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Euler-like product formula

Proof.
The formula for the ¢ function follows by the one for Z as Np = g9e&~.

It can be shown using standard arguments that the RHS of the above
equation involving Z(t) converges absolutely for |t| < g~1. This is mostly

because
oo
D [thEP <) ALt < oo
peP n=1

Due to the absolute convergence, we can write
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Euler-like product formula

Hl_tdegp H Z tdegp)

peP pEP k(p)=0
= Z H tk(p)degp
k peP
_ Z (3, k(p) degp)
_ Z fdega _ Z(t
a>0
where we iterate over all k in P — N with finite support. O

As a corollary of Theorem 10, we have that for Re (s) > 1, {(s) # 0.
Similarly, for |t| < g1, Z(t) # 0.
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Overview

e Schmidt's Theorem, 9 =1
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Schmidt's Theorem, 0 =1

Recall that in this unit we let K =T,. K has a unique degree-r extension
which is denoted by K,. We denote the corresponding constant function
field extension, K,F/K, by F,/K,.

From a prior unit (which we haven't covered), we know that the genus of
F, is the same as that of F. Moreover, if a is a divisor of F/K, we can
view it as a divisor of F,/K, (vie the conorm), where the degree and
dimension of a remain unchanged.

Lemma 11

Let p be a prime divisor of F/K with degree degp = m. Let P, ..., Pq
be all the prime divisors of F, /K, lying above p, with possible repetitions.
Then, B, ..., Py are all distinct. Moreover, for every i € [d],

m

deg’P; = gcd(r,m)’

and d = ged(r, m).
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Schmidt's Theorem, 0 =1

Proof.
We saw that as F,/F is a separable constant field extension, p is
unramified in F,.

Fix i € [d]. By a theorem from the constant function field extensions
unit,
(Fr)‘pi = K/Fy

and so
degP; = [K.Fy : K] =[Fp : (Fp N K]

_ [Fp : K] _ degp
[(FpNK,):K]  ged(r,m)’

Now, degp = d deg*B;, and so

d = ged(r, m).
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Schmidt's Theorem, 0 =1

O\ —

b e

F_rq Kr 4)41-
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Schmidt's Theorem, 0 =1

Theorem 12

Let Z, be the Zi function that corresponds to F,/K,. Then,

= [ zo).

e=1

As on both sides we have meromorphic functions, it suffices to prove
equality for |t| < g~1. By Theorem 10,

Z.(t")~ H H rydee ¥y

pePP/p
whereas
TT #(ee) =TT T1 - (ee*”)
=1 peP§r=1
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Schmidt's Theorem, 0 =1

Proof.

Thus, it suffices to prove that for every p,

[T - (™) = T] (1 (eeyee?).

B/p &r=1

Let m = degp and d = gcd(r, m). By Lemma 11 it suffices to prove that

(1-@)?%)" = [Ta- (™.

gr=1

d

Write k = 5. Note that for § a primitive r-th root of unity it holds that
&M is a primitive k-th root of unity. Thus, the map & — £ is a surjective
homomorphism from the group of r-roots of unity to the group of
k-roots of unity. In particular, every element in the range has preimage of
size £ =d.
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Schmidt's Theorem, 0 =1

Hence, the RHS is given by the d-th power of

[T @—mntm.

nf=1

Therefore it suffices to prove that

1—tm = T (@ - nt"). (6)

This is indeed the case as the k-th roots of unity are exactly to roots of

the polynomial
T -1=]] T-n
nk=1

and substituting t—" for T implies Equation 6. [
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Schmidt's Theorem, 0 =1

Theorem 13 (Schmidt's Theorem)

0=1

By Equation 3

Z(t) = ZAaktak.
k=0
Thus, for £ a d-root of unity, Z(£t) = Z(t). By Theorem 12,
Zo(t%) = Z(t)°.

The proof then follows as at t = 1, the LHS has a simple pole whereas
the RHS has a pole of order 0. OJ
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Schmidt's Theorem, 0 =1

Corollary 14

If g = 0 then F/K is the rational function field and

1
A= T=na -
For g > 1, we have that
2(t) = q% (F(t) + hG(1)).

where

F(t) — Z qdim CtdegC c Q[t]
ceC
0<deg C<2g—2

qét%e1 1
G(t) = €
(1) 1—qgt 1-—t
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Schmidt's Theorem, 0 =1

Proof.
The case g > 1 follows immediately by Theorem 9 and since we now
know 0 = 1.

As for the case g = 0, since @ = 1, F/K has a degree-one divisor and so,
by a result you proved in the problem sets, F/K must be the rational
function field. O

Corollary 14 implies that

L(t)
(1-1)(1 - qt)

for some L(t) € Q[t] a polynomial of degree at most 2g.

Z(t) =
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Overview

@ The functional equation
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The function equation

Theorem 15

For every t (namely, treated as formal power series),

Z(t) = g5 1t 7 <1> :

qt

This assertion is easy to verify for g = 0, so assume g > 1. It suffices to
prove the functional equation for F(t) and G(t). To verify that

qgt2g—1 1
Gt)=— — ——
(1) 1—qgt 1-—t
satisfies )
G(t) = ¢& 11?626 ()
qt
is a straightforward calculation.
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The functional equation

So we turn to show the same for F(t). We have that

qg—1t2g—2F (l) _ qg—1t2g—2 Z qdimC (l)degc
qt qt
0<deg C<2g—2
_ Z qdim C—deg C+g—1 t2g72fdeg C.

ceC
0<deg C<2g—2
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The functional equation

Let W be the canonical class. By Riemann-Roch,

degW = 2g — 2,
dim(W — C)=dimC —deg C + g — 1.

So we can continue and write
L E qdim C—deg C+g—1 t2g—2—deg C

cecC
0<deg C<2g—2
_ Z qdim(W—C) tdeg(W—C)'

ceC
0<deg C<2g—2

Observe that as C € C iterates over all divisors of degree 0,1,...,2g — 2,
so is W — C, and so the RHS is indeed F(t).
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Corollaries

Now that we have established the functional equation,

7(t) = g1t 27 <1> )

gt
we will draw interesting corollaries.

First, denote by N the number of rational prime divisors. Note that
N=A;=|{b| degb=1and b>0}|

Note also that Ag = 1.
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Corollaries

We further denote by Zo(t) the Zi function of Fq(x)/Fq. By Theorem 9
and since 9 = 1 (Theorem 13), we have that

1

2= G an

But 1(e)
2= G000

and so
Z(t)

L(t) = .
From this we get a functional equation for the L-function

L(t) = An _ E ) gt2gL(1 )

Zo(t) ~ q it 2Zo(L) at
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Corollaries

L(t) = q8t°EL <1> )

qt
We know that deg L < 2g. Write

L(t) = ap + art + - - + ag t*E.

Then,
%€ 2 2g 2
Dat' =q ) a(at) T =) 2t T =) aniq EY
i=0 j=0 j=0 i=0

Comparing coefficients, we see that for every i =0,1,...,2g,

—i
arg—i = ajqs".
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Corollaries

Recap
L(t) = ap+ art + - + apgt*E and arg_i = aiqt .
Now,
L(t) = (1 - 1)(1 — qt)Z(1)
=(1—-1t)(1—qt)(Ao+ At +---)

=Ao+ (A1 — (g +1)Ag)t + - --
=1+(N—=(qg+1)t+---.

Therefore,

ap = 1
a=N-— (q + 1)
arg = qg.

In particular, deg L = 2g.



Corollaries

To recap, we proved the following corollary

Corollary 16

The L function of a function field over F, with genus g is of degree 2g
taking the form

L(t) =1+ (N—(q+1))t+ -+ aqéte.
Moreover, for every i =0,1,...,2g,
ag—i = aiq*".
For example, for an elliptic curve over Fy, g =1 and so

L(t) = ao + art + art?
=1+ (N—(g+1))t+ qt>.
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The roots of the L function

Write
2g
L(t) =[] - wit),
i=1
where wl_l, e ,wz_gl are the roots of L. We have that

Theorem 17

2g
g% = Hwi
N—-(g+1)= Zw,

Moreover, we can order the wj-s so that for every i =1,2,..., g,
WilWgti = (.
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The roots of the L function

2g

L) = [[@ - wi).

i=1

we have that
2g
Hw,- = ay, = q°.
i=1

Moreover,

2g
—Zw;:alzN—(q—i—l).
i=1
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The roots of the L function

Recall again that

2g

L(t) =[] - wit),

i=1

L(t) = qét%€L (%)
s 0-3)

-IH(E-9)-11(-2)

and so the sequence (wii),-e[zg] is a permutation of the sequence (w;)ic[2g]-

Now,
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The roots of the L function

Proof.

After rearranging, noting that the permutation can have fixed points
corresponding to values &,/q, we can write the wj-s as

W1y, =y Wky —
w1 Wk

for some 0 < k < g and with additional m copies of /g and n copies of
To conclude the proof, we ought to prove that both m and n are even.

But indeed,
2k +m+ n=2g,

and so it suffices to prove that n is even which follows since
g — le _ qkqm/Z )nqn/2 _ (—1)"qg.
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Overview

© The Riemann Hypothesis over Function Fields
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The Riemann Hypothesis over Function Fields

We are finally ready to state the Riemann Riemann Hypothesis over

function fields which is in fact a theorem(!) - the fundamental
Hasse-Weil Theorem.

Theorem 18

Using the notation above, the following three equivalent statements hold:

@ The roots of ((s) all lie on the line s = % in the complex plane.
@ The roots of Z(t) all lie on the circle of radius |t| = g~ /2.
Q |wi| = /g forall i € [2g].
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The Riemann Hypothesis over Function Fields

An important corollary is

Theorem 19

IN=(q+1)]<2¢gVq

Recall that

2g
=Y wi=a=N-(q+1),
i=1
and so

2g
IN=(qg+1)| <) |wil =284
i=1
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The Riemann Hypothesis over Function Fields

Given the unit on constant field extensions (which takes 2-3 hours to
cover), we will need an additional 3-4 hours to prove the Riemann
Hypothesis for function fields. This means we're not too far! However,
since time is running short, I'll illustrate some components of the proof
by proving a weaker yet still non-trivial variant.

Theorem 20

For every r € N,
2g

L) =[] @ - wfo).

i=1
In particular, RH holds for F /K iff it holds for F,/K,.
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The Riemann Hypothesis over Function Fields

By Theorem 12,
z.(¢") = ] 2(¢),
&1

and so
o Lt Tlermq 2(C1)
“”‘%Mm‘mq%m)

=[] L) = HH 1—w(t)—H(1—w t"),

Gr=1 ¢r=1i=1

where the last equality follows by the identity 7" — 1 = HC,:l (T -9,

substituting T = w;” B

Clearly then,
wil=va < |ull=Vva.
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The Riemann Hypothesis over Function Fields

Theorem 21

If 3¢ € R such that for all r € N

IN, = (¢" +1)| < cq'”?

then RH holds for F /K.

Consider the function

2g

M(t) == : _1w;t € C(t).

i=1

This is a holomorphic function at a neighborhood of 0. Denote by R its
convergence radius, noting that the only singularity (indeed poles) it has
are at wi_l fori=1,...,2g, hence
R = min |wfl|.
1
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The Riemann Hypothesis over Function Fields

On the other hand, by Taylor expanding M(t) around 0, we have that

t)—f?( Zw)

r=0

By Theorem 17 and Theorem 20

Thus,
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The Riemann Hypothesis over Function Fields

(¢" +1))t".

Mg

r:O

Per our assumption,
e vVr [N, —(q"+1)| < cq?
this series convergence for |t| < g~'/2. Hence,

min |w; | = R > g 12,
1

and so |wj| < ,/q for all i € [2g]. But by Theorem 17, []; wi = q&, and
so |wi| = /q for all i € [2g], namely, RH holds for F/K.
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The Riemann Hypothesis over Function Fields

With these results, we prove the following weak version of RH.

Theorem 22

Let F/K be a function field over Fq such that q is an even power of a
prime, satisfying q > (g + 1)*. Assume further that F/K has a prime
divisor of degree 1. Then,

N—(g+1)<(2g+1)/q.

Denote the degree 1 prime divisor by p, and let

9 =9
m=gq —1
n=4q +2g

r=m+q'n
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The Riemann Hypothesis over Function Fields

9 =4 =G =1l
n=4q +2g r=m+q'n

Then

r=(q-1)+q'(q +2g)
=(2g+1)d +(d)’ -1
=(2+1)Vg+q-1

Hence, the bound we wish to prove

N—(qg+1)<(2g+1)\/q

can be expressed as
N—-1<r.
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The Riemann Hypothesis over Function Fields

Proof.
For k € N let

ke={0<i<k|L((i~1)p)# L(Pp)},
and for i € I, denote by u; and element in L(ip) \ L((i — 1)p). As
dim L(ip) —dim L((i —1)p) =1

for i € Iy, we have that {u; | i € It} is a basis of L(kp).
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The Riemann Hypothesis over Function Fields

Claim 23

The set {u; | i € I} (recall m = ¢’ — 1) is linearly independent when the
coefficients are taking from g’ powers of F (denoted F7).

Otherwise, there is () £ | C I, such that

Zy,-q/ uj =0,

iel

where y; € F*. Clearly |/| > 1, and therefore there must be i,j € |
distinct such that the corresponding valuations are equal, namely,

qup(yi) +i = vp(yf ui) = vp(yf 1)) = q'vp(yy) +J

and so i =j mod ¢/, in contradictionto 0</,j<m=gq —1. O
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The Riemann Hypothesis over Function Fields

We turn back to the proof of Theorem 22.

Proof.

As an immediate corollary of Claim 23 we have that the set

{u,-uf/ |i€lm,j€E /,,}
is linearly independent over K. Define

= SpanK(u;uf' | i€ lmyj€Ely)
L= L((mg" + n)p)

By the above,

dimk £ = |In||ln] = dim(mp) dim(np).
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The Riemann Hypothesis over Function Fields

Proof.
Recap.

9 =4 m=gq -1
n

and dimk £ = |Im||l;| = dim(mp) dim(np). Hence, by Riemann-Roch
dimk £L>(m—g+1)(n—g+1)
=(q' —8)d' +&+1)
=q-g°+4d g
Per our assumption,
q=vq>(@g+1)P=g’+2g+1

and so
dmk L>qg+g+1
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The Riemann Hypothesis over Function Fields

Proof.
As for L’

degL'=mq +n=(q'—1)¢' +(qd' +28) = q+2g > 2g - 2.
Thus, by Riemann-Roch,
dmk L' =(qg+2g)—g+1l=q+g+1

Therefore,
dimk £ > dimg L.

To be continued...
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