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What are explicit constructions?

Explicit constructions

Definition

Let G be an undirected graph. We say that G is labelled if every
vertex labels its adjacent edges by 1, . . . , deg(v) with no
repetitions.
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What are explicit constructions?

Definition

A graph G on n vertices is said to be weakly explicit if
generating the graph can be done in polynomial-time. That is,
if the entire graph can be constructed in time poly(n).

G labelled is strongly explicit if accessing any desired neighbor
of any vertex can be done in polynomial time.

That is, there is an algorithm that given v ∈ V and i ∈ [n],
returns the i th neighbor of v if i ≤ deg(v), and ⊥ otherwise.
The running time of the algorithm is poly(log n).
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Squaring

Squaring

Definition

Let G = (V ,E ) be an undirected d-regular graph. The square of
G , denoted by G 2 = (V ,E ′) is defined as follows. For (i , j) ∈ [d ]2,
the (i , j)th neighbor of a vertex u is the j th neighbor of the i th

neighbor of u in G .

Observe that AG2 = A2
G and WG2 = W2

G . Thus, a random step on
G 2 is a length-2 random walk on G .

Corollary

ω(G 2) = ω(G )2



Explicit Constructions of Expander Graphs

Squaring

Squaring

Definition

Let G = (V ,E ) be an undirected d-regular graph. The square of
G , denoted by G 2 = (V ,E ′) is defined as follows. For (i , j) ∈ [d ]2,
the (i , j)th neighbor of a vertex u is the j th neighbor of the i th

neighbor of u in G .

Observe that AG2 = A2
G and WG2 = W2

G . Thus, a random step on
G 2 is a length-2 random walk on G .

Corollary

ω(G 2) = ω(G )2



Explicit Constructions of Expander Graphs

Squaring

Squaring

Definition

Let G = (V ,E ) be an undirected d-regular graph. The square of
G , denoted by G 2 = (V ,E ′) is defined as follows. For (i , j) ∈ [d ]2,
the (i , j)th neighbor of a vertex u is the j th neighbor of the i th

neighbor of u in G .

Observe that AG2 = A2
G and WG2 = W2

G . Thus, a random step on
G 2 is a length-2 random walk on G .

Corollary

ω(G 2) = ω(G )2



Explicit Constructions of Expander Graphs

Tensoring

Overview

1 What are explicit constructions?

2 Squaring

3 Tensoring

4 The Zig-Zag product

5 Explicit construction of expanders



Explicit Constructions of Expander Graphs
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Tensoring

Definition

Let x1 ∈ Rn1 , x2 ∈ Rn2 . We define the tensor product
x1 ⊗ x2 ∈ Rn1n2 of x1, x2 by

(x1 ⊗ x2)(i1,i2) = (x1)i1(x2)i2 .

What is (x1 ⊗ x2)T (y1 ⊗ y2)?
What is ‖x1 ⊗ x2‖?

Remark. Not all vectors in Rn1n2 are of the form x⊗ y, though
the latter span this space. In particular,

{e(i)⊗ e(j) | (i , j) ∈ [n1]× [n2]}
is a basis for Rn1n2 .
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Tensoring

Tensoring

Definition

Let A1 be an n1× n1 matrix, and A2 an n2× n2 matrix. The tensor
product A1 ⊗ A2 is the (n1n2)× (n1n2) matrix that is defined by

(A1 ⊗ A2)(i1,i2),(j1,j2) = (A1)i1,j1(A2)i2,j2 .

Lemma

(A1 ⊗ A2)(x1 ⊗ x2) = (A1x1)⊗ (A2x2).

Lemma

A1 ⊗ A2 = (In1 ⊗ A2)(A1 ⊗ In2) = (A1 ⊗ In2)(In1 ⊗ A2).
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Tensoring

Tensoring

What is I ⊗ J, J being the normalized all-ones matrix?

What is ‖A⊗ B‖?
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Tensoring

Tensoring

Definition

Let G1 = (V1,E1) be a d1-regular labelled graph, and
G2 = (V2,E2) a d2-regular graph. Their tensor product is defined
by

G1 ⊗ G2 = (V1 × V2,E ),

as follows: The (i1, i2)th neighbor of (v1, v2) is (u1, u2) where u1 is
the i th1 neighbor of v1 in G1 and u2 is the i th2 neighbor of v2 in G2.
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Tensoring

Tensoring

Observe that
AG1⊗G2 = AG1 ⊗ AG2 .

We further have that

WG1⊗G2 = WG1 ⊗WG2 .

Thus, a random step on G1 ⊗ G2 consists of a pair of independent
random steps on G1 and G2.
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Tensoring

Tensoring

Claim

ω(G1 ⊗ G2) = ω(G1)ω(G2).
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Tensoring

The vector decomposition method

We will give a second proof for the claim which will demonstrate
the “vector decomposition method”.

Given x ⊥ un1n2 decompose it to x = x⊥ + x‖ where x‖ is uniform
on each cloud and x⊥ is orthogonal to un2 on every cloud.

More formally, x‖ = y ⊗ un2 for some y ∈ Rn1 orthogonal to un1 ,
and

x⊥ =

n1∑
i=1

e(i)⊗ x⊥i

where each x⊥i is orthogonal to un2 .



Explicit Constructions of Expander Graphs

Tensoring

The vector decomposition method

We first analyze the operator W1 ⊗W2 on x‖ = y ⊗ un2 .

(W1 ⊗W2)x‖ = (W1 ⊗W2)(y ⊗ un2)

= (W1y)⊗ (W2un2)

= (W1y)⊗ un2 .

As y ⊥ un2 ,

‖(W1 ⊗W2)x‖‖ = ‖(W1y)⊗ un2‖
= ‖W1y‖‖un2‖
≤ ω(G1)‖y‖‖un2‖
= ω(G1)‖y ⊗ un2‖
= ω(G1)‖x‖‖.
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Tensoring

The vector decomposition method

Next, we analyze the operator W1⊗W2 applied to x⊥, where recall

x⊥ =

n1∑
i=1

e(i)⊗ x⊥i .

(W1 ⊗W2)x⊥ = (W1 ⊗ In2)(In1 ⊗W2)x⊥

= (W1 ⊗ In2)

n1∑
i=1

(In1 ⊗W2)(e(i)⊗ x⊥i )

= (W1 ⊗ In2)

n1∑
i=1

e(i)⊗ (W2x
⊥
i ).
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Tensoring

The vector decomposition method

Now, ∥∥∥ n1∑
i=1

e(i)⊗ (W2x
⊥
i )
∥∥∥2 =

n1∑
i=1

‖e(i)⊗ (W2x
⊥
i )‖2

≤ ω(G2)2
n1∑
i=1

‖e(i)⊗ x⊥i ‖2

= ω(G2)2
∥∥∥ n1∑

i=1

e(i)⊗ x⊥i

∥∥∥2
= ω(G2)2‖x⊥‖2.

As ‖W1 ⊗ In2‖ ≤ 1, we conclude ‖(W1 ⊗W2)x⊥‖ ≤ ω(G2)‖x⊥‖.
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Tensoring

The vector decomposition method

Lastly, we observe that (W1 ⊗W2)x⊥ is orthogonal to
(W1 ⊗W2)x‖. Indeed,

(W1 ⊗W2)x‖ = (W1y)⊗ un2 ,

and so it is uniform on each cloud, whereas

(W1 ⊗W2)x⊥ = (W1 ⊗ In2)

n1∑
i=1

e(i)⊗ (W2x
⊥
i )

=

n1∑
i=1

(W1e(i))⊗ (W2x
⊥
i )

which is orthogonal to un2 on each cloud.
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Tensoring

The vector decomposition method

Thus,

‖(W1 ⊗W2)x‖2 = ‖(W1 ⊗W2)(x‖ + x⊥)‖2

= ‖(W1 ⊗W2)x‖‖2 + ‖(W1 ⊗W2)x⊥‖2

≤ ω(G1)2‖x‖‖2 + ω(G2)2‖x⊥‖2

≤ max(ω(G1)2, ω(G2)2)‖x‖2.

Hence,
ω(G1 ⊗ G2) ≤ max(ω(G1), ω(G2)).

Equality can be attained by taking the corresponding eigenvectors.
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Tensoring

Recap

To recap,

Number of vertices degree spectral gap

Squaring

Tensoring

Zig-Zag
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The Zig-Zag product

The Zig-Zag product

Definition

Let G = (V ,E ) be a d-regular labelled undirected graph. An
edge-rotation map is a function

π : V × [d ]→ V × [d ]

such that for every (u, i) ∈ V × [d ],

π(u, i) = (v , j),

where the i th neighbor of u is v and the j th neighbor of v is u.

We denote by π̇(u, i) the first component of π(u, i), namely, the
vertex alone.

Observe that π is an involution.
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The Zig-Zag product

The Zig-Zag product

Definition

Let G be a d1 regular undirected graph on n1 vertices with
edge-rotation map πG .

Let H be a d2 regular graph on d1 vertices with edge-rotation
map πH .

The Zig-Zag product of G ,H, denoted by G©z H is the graph
whose vertex set is [n1]× [d1]. For a, b ∈ [d2], the (a, b)th neighbor
of vertex (u, i) is the vertex (v , j) computed as follows:

1 Let i ′ = π̇H(i , a).

2 Let (v , j ′) = πG (u, i ′).

3 Let j = π̇H(j ′, b).
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The Zig-Zag product

Figure: The Zig-Zag product of the grid Z2 with the 4-cycle. Figure
shamelessly taken from the Hoory-Linial-Wigderson excellent survey
entitled “Expander Graphs and Their Applications”.
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The Zig-Zag product

The Zig-Zag product - analysis

Theorem

ω(G©z H) ≤ ω(G ) + 2ω(H).

Let P be the involution matrix with

P(u,i),(v ,j) =

{
1 πG (u, i) = (v , j);

0 otherwise.

Let ÃH = In1 ⊗ AH , and denote by A the adjacency matrix of
G©z H.
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The Zig-Zag product

The Zig-Zag product - the never proven claim

Claim (The never proven claim)

A = ÃHPÃH .

The above claim is very intuitive and annoying to write down
formally. But, I gave it here for you to read. To prove the claim,
first recall that, generally, if P is a permutation matrix representing
a permutation π, namely,

Pa,b =

{
1 π(a) = b;

0 otherwise,

then Pe(a) = e(π−1(a)). When P is an involution, we get
Pe(a) = e(π(a)).
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The Zig-Zag product

The Zig-Zag product - the never proven claim

Lets spell out what is it we want to prove. We wish to show that
(ÃHPÃH)(u,i),(v ,j) = 1 if and only if there exist a, b ∈ [d2] such
that if we denote i ′ = π̇H(i , a) and compute (v , j ′) = πG (u, i ′)
then j = π̇H(j ′, b). Now,

ÃHe(u, i) = (In1 ⊗ AH)(e(u)⊗ e(i))

= e(u)⊗ (AHe(i))

= e(u)⊗
d2∑

a′=1

e(π̇H(i , a′))

= e(u, i ′) + e(u)⊗ r,

where r(i ′) = 0.
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The Zig-Zag product

The Zig-Zag product - the never proven claim

Now,

Pe(u, i ′) = e(πG (u, i ′)) = e(v , j ′),

whereas P(e(u)⊗ r) iz zero on all entries (v , ·).

Considering the third step,

ÃHe(v , j ′) = e(v)⊗
d2∑

b′=1

e(π̇H(j ′, b′))

= e(v , π̇H(j ′, b)) + s

= e(v , j) + s

where s(v , j) = 0.
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The Zig-Zag product

The Zig-Zag product - the never proven claim

Moreover, ÃHP(e(u)⊗ r) is also zero on (v , ·). Thus,
(ÃHPÃH)(u,i),(v ,j) = 1 when a, b as above exist. The proof then

follows by a counting argument: the degree of ÃHPÃH is d2
2 - the

same number of choices for a, b.

This proves the never proven claim (who now needs a new name).
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The Zig-Zag product

The Zig-Zag product - analysis

Going back to the analysis of the Zig-Zag product, we have that
A = ÃHPÃH , and hence, by regularity, W = W̃HPW̃H , where W
is the random walk matrix of G©z H.

Let γH = 1− ωH and γG = 1− ωG . Recall that

WH = γHJ + ωHEH ,

where ‖EH‖ ≤ 1. Thus,

W̃H = In1 ⊗ (γHJ + ωHEH)

= γH J̃ + ωH ẼH ,

where J̃ = In1 ⊗ J and ẼH = In1 ⊗ EH .
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The Zig-Zag product

The Zig-Zag product - analysis

To recap

W = W̃HPW̃H ,

W̃H = γH J̃ + ωH ẼH .

Hence,

W = γ2H J̃PJ̃ + Ê,

where
Ê = γHωH

(
J̃PẼH + ẼHPJ̃

)
+ ω2

H ẼHPẼH .

Note that ‖Ê‖ ≤ 2γHωH + ω2
H = 2ωH − ω2

H ≤ 2ωH .

Remark. We actually proved a stronger bound γ ≤ γ2HγG .
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Ê = γHωH

(
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The Zig-Zag product

The Zig-Zag product - analysis

The key observation is that

Claim

J̃PJ̃ = WG ⊗ J.



Explicit Constructions of Expander Graphs

The Zig-Zag product

The Zig-Zag product - analysis

To recap,

W = γ2H(WG ⊗ J) + Ê,

where ‖Ê‖ ≤ 2ωH .

Now, for every x ⊥ 1,

‖Wx‖ ≤ γ2H‖(WG ⊗ J)x‖+ ‖Êx‖
≤ γ2HωG + 2ωH

≤ ωG + 2ωH .
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Explicit construction of expanders

Weakly explicit construction

Let H be a d-regular graph on d4 vertices with ωH = 1
8 .

We iteratively construct graphs G1,G2, . . . where

G1 = H2

Gt+1 = G 2
t ©z H.

Proposition

For every t, Gt is a d2-regular graph on d4t vertices, with
ω(Gt) ≤ 1

2 .
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Explicit construction of expanders

Extra space for the proof
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Explicit construction of expanders

Fully explicit, yet scarce, construction

Iteratively construct graphs G1,G2, . . . where

G1 = H2

Gt+1 = (Gt ⊗ Gt)
2©z H.

Though now we take H to be on d8 vertices.
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Explicit construction of expanders

Extra space for the proof



Explicit Constructions of Expander Graphs

Explicit construction of expanders

Fully explicit construction

The downside of the above suggestion is that the family is rather
sparse. To overcome this, in the problem set you will consider the
variant in which

G1 = H2

Gt+1 = (Gdt/2e ⊗ Gbt/2c)
2©z H.
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Explicit construction of expanders

How close to Ramanujan do we get?

How close to Ramanujan do we get? You will also prove in the
problem set that with this approach we can get

ω = O

(
1

d1/4

)
.
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