Exercise 2: Single Qubit (and Two
Qubits)

2.1 Single Qubit

1. We would like to understand phases of states (scalar multiples of states
e, for 6 € R).

(a) Prove that if |v) is a qudi quantum state that is a scalar multiple of
another quantum state |u), |v) = a/|u), then a = €% for some 6 € R.
We say they are different only by some global phase.

(b) We are given two states of a qudit |u),|v) as in the previous sub-
question. Prove that for any choice of orthonormal basis, the mea-
surement outcome distributions agree on |u) and |v).

(¢) Using the previous subquestion argue that performing any quantum
operation on either |u) or |v) would have identical observable out-
comes (the things we get answers to in the lab, i.e. the answers to
measurements when we perform them as part of the operations).

(d) Prove or disprove the following statement: As a result of the previous
subqeustion, a qubit in the state %ﬂul) + |uz)) and a qubit in the

1
v
would have the same observable outcomes in any quantum operation.
We call the scalar factor multiplying |us) in both states a relative

phase.

state —=(|u1) + €% |ug)) for some § € R and orthonormal |u;), |us)

2. Light has a property called polarisation. We can think of polarisation as a
quantum property of photons that is very appropriate for a qubit, as it is a
direction in the 2-dimensional plane that is perpendicular to the photon’s
trajectory (see . Polarisers are filters that pass light polarised
in a specific direction in the filter’s plane and blocks light that is polarised
in the direction perpendicular to it. So polarisers work similarly to the
devices we saw in the first lecture, where the "up” direction is thrown
away (blocked). We got a new office that has on its only window a weird

LA qudit lives in d-dimensions for a d € N, rather than just 2 as in qubits. We sometimes
call these dimesions ”levels”.
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Unpolarised light

Polarising filter (vertical TA)

Figure 2.1: Polarisers and polarisation of ligh

aparatus: two polarisers, one in a vertical alignment and another after it,
in a horizontal alignment. This means we get no light into our office!

(a) Prove that the probability a photon goes through both polarisers is
0.

(b) Fortunately there is quite a big gap between the polarisers in our
window, and we found polarisers in the office’s drawer. We would
like to take advantage of that in order to get some light in. We will
introduce a new polariser between the fixed ones. The new polariser’s
direction will be a parameter §. Calculate the probability of a photon
that passes through the first polariser to pass through both the new
polariser and the final (horizontal) one as a function of §. What is the
best # to maximise this probability and its corresponding maximal
probability?

(c) Is the maximum we calculated in the previous subquestion the best
we can do without removing the original polarisers?

3. Let |[¢) = ag|0) + a1 1) = B+ |+) + B |—) be a state of a qubit. Define
its ”bit uncertainty” as S(|¢)) := |ag|+ || and similarly its ”sign uncer-
tainty” as S(|1)) := |84|+|6_|. These are measures of how unsure we are
regarding the outcome of the state in a measurement in the corresponding
basis. In this question we will see a version/analogue of the Uncertainty
Principle: we cannot be sure of both bases simultaneously.

(a) Calculate the uncertainties for the computational basis and for the
Hadamard basis of a qubit, i.e. S(|¥)), S(|¢)) for [¢) € {|0),[1),]+),]|—)}.

(b) What is the range of S and of S? (what are the possible evaluations
of them?) When do they achieve the endpoints of that range?

(c) Show that the minimum of the function f(z) := 2%+xv1— 22 for
x € [%7 1] is

(d) Prove a lower bound for the product of the uncertainties S(|¢)) -
S(|1)) that is strictly larger than 1.

2credit: https://entokey.com/polarisation/
3The red font signifies a fix in the exercise
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(e) Conclude from the previous subquestion a lower bound for max{S(|)), S(|¢)))},
showing that at least one property must be uncertain (i.e. at least
one distribution in the corresponding basis must have support on
both options).

4. We would like to distinguish between two specific qubit states |u),|v) in
the sense that given |¢) € {|u),|v)} we are tasked to pronounce which
one we were given. Let’s understand how well we can perform this task.
For convenience, assume |u),|v) have real amplitudes.

(a) Prove the only important factor here is the angle between the two
vectors, (u|v).

(b) Two-sided error: using the previous subquestion, we may decide to
orient the vectors |u), |v) in the real plane, where the the bisector
(the mid-angle) is at |+), where |u) is closer to |0) and |v) to |1).
Then we can propose to measure in the computational basis and
guess that if we got the outcome |0) we started with |u), and if we
got the outcome |1) we started with |v). What kind of errors are
possible in our protocol? Calculate the probability of an error in this
protocol.

(¢) One-sided error: propose a different protocol, where the error is
asymmetric. We want to be infallible, meaning having no proba-
bility to err, if we get |u), and for that we allow ourselves to make
mistakes if we are given |v), but hopefully with as little probability
as possible. What is the error probability you can achieve, in case
we get |[v)?

(d) "Zero-sided error”: of course the previous subquestion could easily
be made into a protocol that can err only if we are given |v). Use
these two one-sided error protocols, one for each side, and construct
a protocol that is allowed to guess also a don’t-know answer, i.e. one
of the three {|u),|v),”don’t know”}, but when it guesses a vector
it must be correct. Clearly we would have liked the probability of
”don’t know” to be minimal. What is the probability your procedure
achieves?

2.2 Two Qubits

1. A state |¢) is separable (or an unentangled state) if |1p) = |$1) ® |p2) for
some states |¢1),|d2). A state that is not separable is entangled. Which
of the following states are separable? Prove your answers.

|01)—[10)
() P72
|00)+]01)+|11)
(b) ==

00)+i[01)+i]10)—|11
(C)\>|>2\>|>
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(d) |00
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