On Raz and Reingold PRG and A New White Box WPRG, and Error Reduction For Weighted PRGs Against Read Once Branching Programs Master's Thesis Presentation

Oren Renard

Tel-Aviv University

October 12, 2021

Table of Contents

- Space vs. Randomness
- Motivation, Goals and Results
- On Raz and Reingold [RR99] PRG
 - Brief overview of [INW94]
 - [RR99] Assumptions, Doubts and Answers
 - Overview of [RR99]
- Error Reduction For WPRGs Against ROBPs [CDR+21]
 - Matrix Powering, PRGs and Laplacians inverses
 - Richardson Iterations
 - Error Reduction for PRGs
 - Subsequent work
- Future Directions

BPL vs. L

Definition (Space Bounded Classes)

- 1 L is the class of all languages decidable by logarithmic space TM,
- BPL, RL defined as all languages that are decidable by logarithmic space probabilistic TM with two or one sided error, respectively.

Oren Renard Master's Thesis Presentation 3 / 56

BPL vs. L

Definition (Space Bounded Classes)

- 1 L is the class of all languages decidable by logarithmic space TM,
- BPL, RL defined as all languages that are decidable by logarithmic space probabilistic TM with two or one sided error, respectively.

The problem

What are the relations between BPL, RL and L?

Oren Renard Master's Thesis Presentation 3 / 56

Read Once Branching Programs

The uniform PTM model is difficult to work with directly.

Lemma

Every PTM with fixed input length n that uses space s(n) can be represented by an $(n, w = 2^{O(s(n))})$ Read Once Branching Program (ROBP, BP).

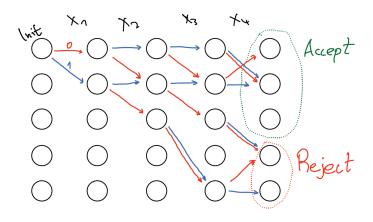


Figure: An $(n = 4, \mathbf{w} = 5)$ BP.

Approaches for Derandomization

 $\textbf{Goal:} \ \, \textbf{approximate acceptance probability of all } (n, \textcolor{red}{\textbf{w}}) \ \, \textbf{machines}.$

Approaches for Derandomization

Goal: approximate acceptance probability of all (n, \mathbf{w}) machines.

Definition (Der. Algorithm)

Given an (n, \mathbf{w}) BP, approximate its acceptance probability up to error ε .

This is a White Box technique, as its allowed to inspect the input.

Another approach is in oblivious manner, i.e. Black Box techniques.

Definition (PRG)

A function $G:\{0,1\}^s \to \{0,1\}^n$ is called an $(n, \mathbf{w}, \varepsilon)$ PRG, if for every (n, \mathbf{w}) BP M,

$$|\mathbb{E}[M(U_n)] - \mathbb{E}[M(G(U_s))]| \le \varepsilon.$$

Another approach is in oblivious manner, i.e. Black Box techniques.

Definition (PRG)

A function $G: \{0,1\}^s \to \{0,1\}^n$ is called an $(n, \mathbf{w}, \varepsilon)$ PRG, if for every (n, \mathbf{w}) BP M,

$$|\mathbb{E}[M(U_n)] - \mathbb{E}[M(G(U_s))]| \leq \varepsilon.$$

By the probabilistic method, $\exists (n, \mathbf{w}, \varepsilon) \text{ PRG}$ with seed length $\mathbf{s} = O(\log n + \log \mathbf{w} + \log \varepsilon^{-1})$.

Another approach is in oblivious manner, i.e. Black Box techniques.

Definition (PRG)

A function $G:\{0,1\}^s \to \{0,1\}^n$ is called an $(n, \mathbf{w}, \varepsilon)$ PRG, if for every (n, \mathbf{w}) BP M,

$$|\mathbb{E}[M(U_n)] - \mathbb{E}[M(G(U_s))]| \leq \varepsilon.$$

By the probabilistic method, $\exists (n, \mathbf{w}, \varepsilon)$ PRG with seed length $\mathbf{s} = O(\log n + \log \mathbf{w} + \log \varepsilon^{-1})$.

Definition (WPRG)

A pair of functions $(G, \mu): \{0, 1\}^s \to \{0, 1\}^n \times \mathbb{R}$ are called $(n, \mathbf{w}, \varepsilon)$ Weighted-PRG, if for every (n, \mathbf{w}) BP M,

$$\left| \mathbb{E}[M(U_n)] - \mathbb{E}_{x \sim U_s}[\mu(x) \cdot M(G(x))] \right| \leq \varepsilon.$$

Another approach is in oblivious manner, i.e. Black Box techniques.

Definition (PRG)

A function $G:\{0,1\}^s \to \{0,1\}^n$ is called an $(n, \mathbf{w}, \varepsilon)$ PRG, if for every (n, \mathbf{w}) BP M,

$$|\mathbb{E}[M(U_n)] - \mathbb{E}[M(G(U_s))]| \leq \varepsilon.$$

By the probabilistic method, $\exists (n, w, \varepsilon)$ PRG with seed length $s = O(\log n + \log w + \log \varepsilon^{-1})$.

Definition (WPRG)

A pair of functions $(G, \mu): \{0, 1\}^s \to \{0, 1\}^n \times \mathbb{R}$ are called $(n, \mathbf{w}, \varepsilon)$ Weighted-PRG, if for every (n, \mathbf{w}) BP M,

$$\left| \mathbb{E}[M(U_n)] - \mathbb{E}_{x \sim U_s} [\mu(x) \cdot M(G(x))] \right| \leq \varepsilon.$$

For every machine M, the Derandomization via PRG/WPRG (G, μ) follows as:

- Enumerate seeds $x \in \{0,1\}^s$,
- ② Compute G(x),
- **3** Avg. the result of M(G(x)),
 - For WPRG: consider the weighted avg.

Another approach is in oblivious manner, i.e. Black Box techniques.

Definition (PRG)

A function $G:\{0,1\}^s \to \{0,1\}^n$ is called an $(n, \mathbf{w}, \varepsilon)$ PRG, if for every (n, \mathbf{w}) BP M,

$$|\mathbb{E}[M(U_n)] - \mathbb{E}[M(G(U_s))]| \leq \varepsilon.$$

By the probabilistic method, $\exists (n, \mathbf{w}, \varepsilon) \text{ PRG}$ with seed length $\mathbf{s} = O(\log n + \log \mathbf{w} + \log \varepsilon^{-1})$.

Definition (WPRG)

A pair of functions $(G, \mu): \{0, 1\}^s \to \{0, 1\}^n \times \mathbb{R}$ are called $(n, \mathbf{w}, \varepsilon)$ Weighted-PRG, if for every (n, \mathbf{w}) BP M,

$$\left| \mathbb{E}[M(U_n)] - \mathbb{E}_{x \sim U_s} [\mu(x) \cdot M(G(x))] \right| \leq \varepsilon.$$

For every machine M, the Derandomization via PRG/WPRG (G, μ) follows as:

- Enumerate seeds $x \in \{0, 1\}^s$,
- ② Compute G(x),
- **3** Avg. the result of M(G(x)),
 - ► For WPRG: consider the weighted avg.
 - \implies Computing $\mathbb{E}[M(U_n)] \pm \varepsilon$ takes space: space(G) + seed(G)

Brief History of Derandomization

Space	Ref
C(lgn. lg nw)	Sav 70' Nis 92 BCP 83', Nis 92
O(vlyn · lg nu)	SZ 95'
O(Vign · lg (NW) + lg lg NW (E)	AKMPVS 21
O(16n · 1g/20) · 15/50	H020 21
Der. of (h,w)	BP

Seed Type Ref

$$O(|g_{1}, |g_{\frac{hw}{\epsilon}}) \quad PRG \quad Mic 92', INW 94'$$

$$O(\frac{|g_{1}, |g_{\frac{hw}{\epsilon}}|}{|g_{1}w^{2}|}) \quad PRG \quad Arm 98'$$

$$O(|g_{1}, |g_{(hw)}| + |g_{\frac{1}{\epsilon}}|) \quad WPRG \quad BCG 18', CL20' \\ CPRSTS 21', PV 21'$$

$$O(|g_{1}|g_{(hw)} + |g_{\frac{1}{\epsilon}}|) \quad WPRG \quad Hopen 21'$$

$$PRG | WPRG \quad for \quad (h, w) \quad BP$$

Brief History of Derandomization

Space Ref

$$C(|g_n||g|\frac{hw}{\epsilon})$$
 $S_{av} \neq v'$
 $b(pg)^{av}$
 $D(|g_n||g|\frac{hw}{\epsilon})$
 $S_{av} \neq v'$
 $b(pg)^{av}$
 $b(pg)^{av}$
 $c(|g_n||g|\frac{hw}{\epsilon})$
 $c(|g_n||g|\frac{hw}{\epsilon})$

Table of Contents

- Space vs. Randomness
- Motivation, Goals and Results
- On Raz and Reingold [RR99] PRG
 - Brief overview of [INW94]
 - [RR99] Assumptions, Doubts and Answers
 - Overview of [RR99]
- 4 Error Reduction For WPRGs Against ROBPs [CDR+21]
 - Matrix Powering, PRGs and Laplacians inverses
 - Richardson Iterations
 - Error Reduction for PRGs
 - Subsequent work
- Future Directions

Rough recipe for PRGs by [Nis92; INW94]

Simplification: (1) all the layers of M are equal, (2) denote $M \in \mathbb{R}^{w \times w}$ as the transition matrix.

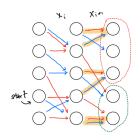
Rough recipe for PRGs by [Nis92; INW94]

Simplification: (1) all the layers of M are equal, (2) denote $M \in \mathbb{R}^{w \times w}$ as the transition matrix. **One step.** Prove the Recycle lemma for arbitrary $w \in \mathbb{N}$ and $\varepsilon_{\mathcal{P}} > 0$:

Recycle Lemma

 \exists an explicit construction of pseudo random family ${\mathcal P}$ s.t. for every $(2,{\color{red} w})$ BP M,

$$p \sim U_{\mathcal{P}} \implies M_p \approx_{\varepsilon_{\mathcal{P}}} M^2$$



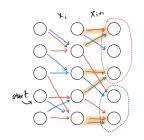
Rough recipe for PRGs by [Nis92; INW94]

Simplification: (1) all the layers of M are equal, (2) denote $M \in \mathbb{R}^{w \times w}$ as the transition matrix. **One step.** Prove the Recycle lemma for arbitrary $w \in \mathbb{N}$ and $\varepsilon_{\mathcal{P}} > 0$:

Recycle Lemma

 \exists an explicit construction of pseudo random family ${\mathcal P}$ s.t. for every $(2,{\color{red} w})$ BP M,

$$p \sim U_{\mathcal{P}} \implies M_p \approx_{\varepsilon_{\mathcal{P}}} M^2$$



Deduce PRG recursively.

Sample independently $\overline{p} = (p_1, \dots, p_h)$ so for every $(2^h, \mathbf{w})$ BP M,

$$M_{p_1,\dots,p_h} \approx_{\varepsilon(1)} M_{p_1,\dots,p_{h-1}}^2 \approx_{\varepsilon(2)} \dots \approx_{\varepsilon(h)} M^{2^h}$$

Oren Renard Master's Thesis Presentation 10 / 56

Rough recipe for PRGs by [Nis92; INW94] (cont.)

Analysis. The family size in both constructions is

$$\log |\mathcal{P}| = O(\log w + \log \varepsilon_{\mathcal{P}}^{-1}).$$

Rough recipe for PRGs by [Nis92; INW94] (cont.)

Analysis. The family size in both constructions is

$$\log |\mathcal{P}| = O(\log w + \log \varepsilon_{\mathcal{P}}^{-1}).$$

At level h they claim that $M_{p_1,...p_h} \approx_{\varepsilon(h)} M^{2^h}$, where

$$\varepsilon(h) = 2\varepsilon(h-1) + \varepsilon_{\mathcal{P}}.$$

Thus $\varepsilon \stackrel{\text{def}}{=} \varepsilon(\log n) = n \cdot \varepsilon_{\mathcal{P}}$, so the seed length becomes

$$\begin{split} s &= \log n \cdot (\log |\mathcal{P}|) \\ &= O(\log n \cdot (\log w + \log \varepsilon_{\mathcal{P}}^{-1})) \\ &= O(\log n \cdot (\log n + \log w + \log \varepsilon^{-1})) \end{split}$$

Rough recipe for PRGs by [Nis92; INW94] (cont.)

Analysis. The family size in both constructions is

$$\log |\mathcal{P}| = O(\log w + \log \varepsilon_{\mathcal{P}}^{-1}).$$

At level h they claim that $M_{p_1,...p_h} \approx_{\varepsilon(h)} M^{2^h}$, where

$$\varepsilon(h) = 2\varepsilon(h-1) + \varepsilon_{\mathcal{P}}.$$

Thus $\varepsilon \stackrel{\mathrm{def}}{=} \varepsilon(\log n) = n \cdot \mathbb{Z}$, so the seed length becomes

$$s = \log n \cdot (\log |\mathcal{P}|)$$

$$= O(\log n \cdot (\log w + \log \varepsilon_{\mathcal{P}}^{-1}))$$

$$= O(\log n \cdot (\log n + \log w + \log \varepsilon^{-1}))$$

Gil's Road map to space bounded computation

Improving Nisan [Nis92] PRG.

Better analysis of the error may lead to PRG with seed length

$$s_{\text{romantic}} = O(\log n \cdot (\log w) + \log \varepsilon^{-1})$$

Gil's Road map to space bounded computation

Improving Nisan [Nis92] PRG.

Better analysis of the error may lead to PRG with seed length

$$s_{\text{romantic}} = O(\log n \cdot (\log w) + \log \varepsilon^{-1})$$

Improving Saks and Zhou [SZ99] derandomization.

• The WPRG of Braverman, Cohen, and Garg [BCG18] already has seed length

$$\mathsf{s}_{\mathsf{BCG}} = \widetilde{O}(\log n \cdot (\log n + \log w) + \log \varepsilon^{-1}),$$

while Raz and Reingold [RR99] obtained conditional PRG with seed length

$$\mathsf{s}_{\mathsf{RR}} = \widetilde{O}(\log n \cdot (\log n + \log \varepsilon^{-1}) + \log w).$$

Gil's Road map to space bounded computation

Improving Nisan [Nis92] PRG.

Better analysis of the error may lead to PRG with seed length

$$s_{\text{romantic}} = O(\log n \cdot (\log w) + \log \varepsilon^{-1})$$

Improving Saks and Zhou [SZ99] derandomization.

• The WPRG of Braverman, Cohen, and Garg [BCG18] already has seed length

$$\mathsf{s}_{\mathsf{BCG}} = \widetilde{O}(\log n \cdot (\log n + \log w) + \log \varepsilon^{-1}),$$

@ while Raz and Reingold [RR99] obtained conditional PRG with seed length

$$\mathsf{s}_{\mathsf{RR}} = \widetilde{O}(\log n \cdot (\log n + \log \varepsilon^{-1}) + \log w).$$

So maybe combine somehow [BCG18] and [RR99] to get

$$\mathsf{s}_{\mathsf{hopefully}} = \widetilde{O}(\log n \cdot (\log n) + \log w + \log \varepsilon^{-1}).$$

Plugging such a good seeded PRG into [SZ99] framework would yield BPL \subseteq L^{4/3}.

Theorem ([CDR+21; PV21])

Let $G_0: \{0,1\}^{s_0} \to \{0,1\}^n$ be an $(n,w,\varepsilon_0=1/n^2)$ Black Box PRG. Then, for every error parameter $0<\varepsilon<\varepsilon_0$ there exists an (n,w,ε) Black Box WPRG with seed length

$$s_0 + O\left((\log w + \log \varepsilon^{-1}) \cdot \log \log_n(1/\varepsilon)\right)$$

computable in space
$$O\left(space(G_0) + \log\log_n(1/\varepsilon) \cdot (\log\log(w/\varepsilon))^2\right)$$
.

Theorem ([CDR+21; PV21])

Let $G_0: \{0,1\}^{s_0} \to \{0,1\}^n$ be an $(n,w,\varepsilon_0=1/n^2)$ Black Box PRG. Then, for every error parameter $0<\varepsilon<\varepsilon_0$ there exists an (n,w,ε) Black Box WPRG with seed length

$$s_0 + O\left((\log w + \log \varepsilon^{-1}) \cdot \log \log_n(1/\varepsilon)\right)$$

computable in space $O\left(\operatorname{space}(G_0) + \log\log_n(1/\varepsilon) \cdot (\log\log(w/\varepsilon))^2\right)$.

Re organization of [RR99]

- An attempt to simplify the proof of [RR99]
- 2 Reducing their conditional result to explicit one

Theorem ([CDR+21; PV21])

Let $G_0: \{0,1\}^{s_0} \to \{0,1\}^n$ be an $(n,w,\varepsilon_0=1/n^2)$ Black Box PRG. Then, for every error parameter $0<\varepsilon<\varepsilon_0$ there exists an (n,w,ε) Black Box WPRG with seed length

$$s_0 + O\left((\log w + \log \varepsilon^{-1}) \cdot \log \log_n(1/\varepsilon)\right)$$

computable in space $O\left(space(G_0) + \log\log_n(1/\varepsilon) \cdot (\log\log(w/\varepsilon))^2\right)$.

Re organization of [RR99]

- An attempt to simplify the proof of [RR99]
- 2 Reducing their conditional result to explicit one

Theorem

There exists an $(n, \mathbf{w}, \varepsilon)$ White Box WPRG with seed length

$$\mathsf{s} = \widetilde{O}(\log n \cdot (\log n) + \log w + \log \varepsilon^{-1}),$$

that is computable in space

$$\widetilde{O}(\log n \cdot (\log n) + \sqrt{\log n} \cdot (\log w) + \log \varepsilon^{-1}).$$

Theorem ([CDR+21; PV21])

Let $G_0: \{0,1\}^{s_0} \to \{0,1\}^n$ be an $(n,w,\varepsilon_0=1/n^2)$ Black Box PRG. Then, for every error parameter $0<\varepsilon<\varepsilon_0$ there exists an (n,w,ε) Black Box WPRG with seed length

$$s_0 + O\left((\log w + \log \varepsilon^{-1}) \cdot \log \log_n(1/\varepsilon)\right)$$

computable in space $O\left(space(G_0) + \log\log_n(1/\varepsilon) \cdot (\log\log(w/\varepsilon))^2\right)$.

Re organization of [RR99]

- An attempt to simplify the proof of [RR99]
- 2 Reducing their conditional result to explicit one

Theorem

There exists an $(n, \mathbf{w}, \varepsilon)$ White Box WPRG with seed length

$$s = \widetilde{O}(\log n \cdot (\log n) + \log w + \log \varepsilon^{-1}),$$

that is computable in space

$$\widetilde{O}(\log n \cdot (\log n) + \sqrt{\log n \cdot (\log w)} + \log \varepsilon^{-1}).$$

Table of Contents

- Space vs. Randomness
- Motivation, Goals and Results
- On Raz and Reingold [RR99] PRG
 - Brief overview of [INW94]
 - [RR99] Assumptions, Doubts and Answers
 - Overview of [RR99]
- 4 Error Reduction For WPRGs Against ROBPs [CDR+21]
 - Matrix Powering, PRGs and Laplacians inverses
 - Richardson Iterations
 - Error Reduction for PRGs
 - Subsequent work
- Future Directions

Table of Contents

- Space vs. Randomness
- Motivation, Goals and Results
- On Raz and Reingold [RR99] PRG
 - Brief overview of [INW94]
 - [RR99] Assumptions, Doubts and Answers
 - Overview of [RR99]
- 4 Error Reduction For WPRGs Against ROBPs [CDR+21]
 - Matrix Powering, PRGs and Laplacians inverses
 - Richardson Iterations
 - Error Reduction for PRGs
 - Subsequent work
- Future Directions

Brief exposition of Extractors

Definition

A distribution $X \subseteq \{0,1\}^n$ is called (n,k) source if

$$\max_{x \in \operatorname{supp}(X)} \Pr[X = x] \le 2^{-k}.$$

Brief exposition of Extractors

Definition

A distribution $X \subseteq \{0,1\}^n$ is called (n,k) source if

$$\max_{x\in \mathrm{supp}(X)} \Pr[X=x] \leq 2^{-k}.$$

Definition

 $\operatorname{Ext}: \{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$ is called (k,ε) extractor if for every (n,k) source X,

$$\operatorname{Ext}(X, U_{\operatorname{\mathbf{d}}}) \approx_{\varepsilon} U_{\operatorname{\mathbf{m}}}.$$

Brief exposition of Extractors

Definition

A distribution $X \subseteq \{0,1\}^n$ is called (n,k) source if

$$\max_{x \in \text{supp}(X)} \Pr[X = x] \le 2^{-k}.$$

Definition

Ext: $\{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$ is called (k,ε) extractor if for every (n,k) source X,

$$\operatorname{Ext}(X, U_{\operatorname{\mathbf{d}}}) \approx_{\varepsilon} U_{\operatorname{\mathbf{m}}}.$$

Theorem (Lower bound)

A (k, ε) extractor is optimal if

$$d = O(\log(n/\varepsilon))$$

$$m = k + d - O(\log \varepsilon^{-1}).$$

For simplicity we assume such extractors are fully explicit (i.e. computable in linear space)...

Oren Renard Master's Thesis Presentation 16 / 56

Toy example of [INW94]

We focus on fooling (n + m, w) BPs.

• Let Ext be a $(k_{\text{INW}} = n - (\log w - \log \varepsilon^{-1} - 1), \varepsilon/2)$ optimal extractor, where $\text{Ext}: \{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m.$

② The PRG INW : $\{0,1\}^{n+d} \rightarrow \{0,1\}^{n+m}$ is defined as

$$\mathrm{INW}(x \circ y) = x \circ \mathrm{Ext}(x,y).$$

Toy example of [INW94]

We focus on fooling (n + m, w) BPs.

• Let Ext be a $(k_{\text{INW}} = n - (\log w - \log \varepsilon^{-1} - 1), \varepsilon/2)$ optimal extractor, where

Ext:
$$\{0,1\}^{n} \times \{0,1\}^{d} \to \{0,1\}^{m}$$
.

② The PRG INW: $\{0,1\}^{n+d} \rightarrow \{0,1\}^{n+m}$ is defined as

$$\mathrm{INW}(x \circ y) = x \circ \mathrm{Ext}(x,y).$$

Claim

INW is an ε -PRG, i.e. for every (n + m, w) BP M,

$$|\Pr[M(U_{n+m}) \text{ acc}] - \Pr[M(INW(U_{n+d})) \text{ acc}]| \le \varepsilon.$$

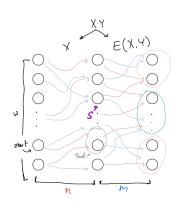
Toy example of [INW94] (cont.)

INW PRG

Let Ext be $(k_{\mathrm{INW}} = n - (\log w - \log \varepsilon^{-1} - 1), \varepsilon/2)$ extractor. Then, $\mathrm{INW}(x \circ y) = x \circ \mathrm{Ext}(x,y)$.

Analysis.

Let $X \circ Y \sim U_{\mathbf{n}+d}$, and M be some BP. Let $s \sim M(X)$.



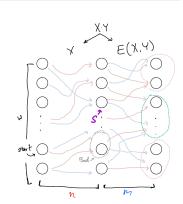
INW PRG

Let Ext be $(k_{\mathrm{INW}} = n - (\log w - \log \varepsilon^{-1} - 1), \varepsilon/2)$ extractor. Then, $\mathrm{INW}(x \circ y) = x \circ \mathrm{Ext}(x,y)$.

Analysis.

Let $X \circ Y \sim U_{n+d}$, and M be some BP. Let $s \sim M(X)$. Define

$$\operatorname{Bad} \stackrel{\mathsf{def}}{=} \{ s : \Pr[M(X) = s] < \varepsilon/2 \underline{w} \}.$$



INW PRG

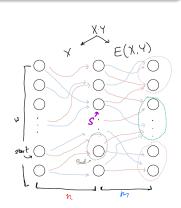
Let Ext be $(k_{\mathrm{INW}} = n - (\log w - \log \varepsilon^{-1} - 1), \varepsilon/2)$ extractor. Then, $\mathrm{INW}(x \circ y) = x \circ \mathrm{Ext}(x,y)$.

Analysis.

Let $X \circ Y \sim U_{n+d}$, and M be some BP. Let $s \sim M(X)$. Define

$$\operatorname{Bad} \stackrel{\mathsf{def}}{=} \{ s : \Pr[M(X) = s] < \varepsilon/2w \}.$$

Define X_s as the uniform dist. over $M^{-1}(s)$.



INW PRG

Let Ext be $(k_{\text{INW}} = n - (\log w - \log \varepsilon^{-1} - 1), \varepsilon/2)$ extractor. Then, $\text{INW}(x \circ y) = x \circ \text{Ext}(x, y)$.

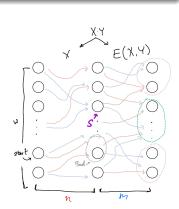
Analysis.

Let $X \circ Y \sim U_{n+d}$, and M be some BP. Let $s \sim M(X)$. Define

$$\operatorname{Bad} \stackrel{\mathsf{def}}{=} \{s : \Pr[M(X) = s] < \varepsilon/2\mathbf{w}\}.$$

Define X_s as the uniform dist. over $M^{-1}(s)$. It is not hard to prove:

$$s \notin \text{Bad} \implies X_s \text{ is an } (n, k_{\text{INW}}) \text{ source.}$$



INW PRG

Let Ext be $(k_{\mathrm{INW}} = n - (\log w - \log \varepsilon^{-1} - 1), \varepsilon/2)$ extractor. Then, $\mathrm{INW}(x \circ y) = x \circ \mathrm{Ext}(x,y)$.

$$\operatorname{Bad} \stackrel{\mathsf{def}}{=} \{s : \Pr[M(X) = s] < \varepsilon/2w\}.$$

Master's Thesis Presentation

INW PRG

Let Ext be $(k_{\mathrm{INW}} = n - (\log w - \log \varepsilon^{-1} - 1), \varepsilon/2)$ extractor. Then, $\mathrm{INW}(x \circ y) = x \circ \mathrm{Ext}(x,y)$.

$$\operatorname{Bad} \stackrel{\mathsf{def}}{=} \{s : \Pr[M(X) = s] < \varepsilon/2\underline{w}\}.$$

Thus,

$$\begin{split} &|\Pr[M(U_{n+m}) \text{ acc}] - \Pr[M(\text{INW}(U_{n+d})) \text{ acc}]| \\ &= |\Pr[M(X \circ U_m) \text{ acc}] - \Pr[M(\text{INW}(X,Y)) \text{ acc}]| \\ &= \left| \sum_{s \in [w]} \Pr[M(X) = s] \cdot (\Pr[M_s(U_m) \text{ acc}] - \Pr[M_s(\text{Ext}(X_s,Y)) \text{ acc}]) \right| \\ &\leq \left| \sum_{s \notin \text{Bad}} \Pr[M(X) = s] \cdot \text{SD}(U_m, \text{Ext}(X_s,Y)) \right| + \left| \sum_{s \in \text{Bad}} \Pr[M(X) = s] \cdot 1 \right| \\ &\leq 1 \cdot \frac{\varepsilon}{2} + w \cdot \frac{\varepsilon}{2w} \\ &\leq \varepsilon. \end{split}$$

Oren Renard Master's Thesis Presentation 19 / 56

The PRG $\text{INW}_{h+1}: \{0,1\}^{\ell_{h+1}} \times \{0,1\}^{d_{h+1}} \to \{0,1\}^{m_h}$ defined as

$$\begin{split} \text{INW}_{h+1}(x \circ y) &\stackrel{\text{def}}{=} \text{INW}(x) \circ \text{INW}(\text{Ext}_h(x,y)) \\ \text{INW}_1(x) &\stackrel{\text{def}}{=} x_0 \end{split}$$

where $\operatorname{Ext}_{h+1}: \{0,1\}^{\ell_{h+1}} \times \{0,1\}^{d_{h+1}} \to \{0,1\}^{m_h}$ is a $(k_{h+1}, \varepsilon_{\operatorname{Ext}})$ extractor.

The PRG INW_{h+1}: $\{0,1\}^{\ell_{h+1}} \times \{0,1\}^{d_{h+1}} \to \{0,1\}^{m_h}$ defined as

$$\begin{split} \mathrm{INW}_{h+1}(x \circ y) &\stackrel{\mathsf{def}}{=} \mathrm{INW}(x) \circ \mathrm{INW}(\mathrm{Ext}_h(x,y)) \\ \mathrm{INW}_1(x) &\stackrel{\mathsf{def}}{=} x_0 \end{split}$$

where $\operatorname{Ext}_{h+1}: \{0,1\}^{\ell_{h+1}} \times \{0,1\}^{d_{h+1}} \to \{0,1\}^{m_h}$ is a $(k_{h+1},\varepsilon_{\operatorname{Ext}})$ extractor. Parameters.

1 The entropy is set to $k_{h+1} = \ell_{h+1} - O(\log w + \log \varepsilon_{\mathrm{Ext}}^{-1})$.

The PRG INW_{h+1}: $\{0,1\}^{\ell_{h+1}} \times \{0,1\}^{d_{h+1}} \to \{0,1\}^{m_h}$ defined as

$$\begin{split} \text{INW}_{h+1}(x \circ y) &\stackrel{\text{def}}{=} \text{INW}(x) \circ \text{INW}(\text{Ext}_h(x,y)) \\ \text{INW}_1(x) &\stackrel{\text{def}}{=} x_0 \end{split}$$

where $\operatorname{Ext}_{h+1}: \{0,1\}^{\ell_{h+1}} \times \{0,1\}^{d_{h+1}} \to \{0,1\}^{m_h}$ is a $(k_{h+1},\varepsilon_{\operatorname{Ext}})$ extractor. Parameters.

- **1** The entropy is set to $k_{h+1} = \ell_{h+1} O(\log w + \log \varepsilon_{\operatorname{Ext}}^{-1})$.
- **②** Using optimal extractors, $m_h = k_{h+1} O(\log \varepsilon_{\text{Ext}}^{-1})$ and $d_h = O(\log \ell_h + \log \varepsilon_{\text{Ext}}^{-1})$.

The PRG INW_{h+1}: $\{0,1\}^{\ell_{h+1}} \times \{0,1\}^{d_{h+1}} \to \{0,1\}^{m_h}$ defined as

$$\begin{split} \mathrm{INW}_{h+1}(x \circ y) &\stackrel{\mathsf{def}}{=} \mathrm{INW}(x) \circ \mathrm{INW}(\mathrm{Ext}_h(x,y)) \\ \mathrm{INW}_1(x) &\stackrel{\mathsf{def}}{=} x_0 \end{split}$$

where $\operatorname{Ext}_{h+1}: \{0,1\}^{\ell_{h+1}} \times \{0,1\}^{d_{h+1}} \to \{0,1\}^{m_h}$ is a $(k_{h+1},\varepsilon_{\operatorname{Ext}})$ extractor. Parameters.

- **1** The entropy is set to $k_{h+1} = \ell_{h+1} O(\log w + \log \varepsilon_{\text{Ext}}^{-1})$.
- ① Using optimal extractors, $m_h = \frac{k_{h+1}}{1} O(\log \varepsilon_{\text{Ext}}^{-1})$ and $d_h = O(\log \ell_h + \log \varepsilon_{\text{Ext}}^{-1})$.

Thus, the seed develops as

$$\begin{split} \boldsymbol{\ell_{h+1}} &= \boldsymbol{\ell_h} + d_h + O(\log w + \log \varepsilon_{\text{Ext}}^{-1}) \\ &= \boldsymbol{\ell_h} + O(\log \ell_h + \log \varepsilon_{\text{Ext}}^{-1}) + O(\log w + \log \varepsilon_{\text{Ext}}^{-1}) \\ &= O(h \cdot (\log w + \log \varepsilon_{\text{Ext}}^{-1})). \end{split}$$

The PRG INW_{h+1}: $\{0,1\}^{\ell_{h+1}} \times \{0,1\}^{d_{h+1}} \to \{0,1\}^{m_h}$ defined as

$$\begin{split} \text{INW}_{h+1}(x \circ y) &\stackrel{\text{def}}{=} \text{INW}(x) \circ \text{INW}(\text{Ext}_h(x,y)) \\ \text{INW}_1(x) &\stackrel{\text{def}}{=} x_0 \end{split}$$

where $\operatorname{Ext}_{h+1}: \{0,1\}^{\ell_{h+1}} \times \{0,1\}^{d_{h+1}} \to \{0,1\}^{m_h}$ is a $(k_{h+1}, \varepsilon_{\operatorname{Ext}})$ extractor. Parameters.

- **1** The entropy is set to $k_{h+1} = \ell_{h+1} O(\log w + \log \varepsilon_{\text{Ext}}^{-1})$.
- $m{0}$ Using optimal extractors, $m_h = k_{h+1} O(\log \varepsilon_{\mathrm{Ext}}^{-1})$ and $d_h = O(\log \ell_h + \log \varepsilon_{\mathrm{Ext}}^{-1})$.

Thus, the seed develops as

$$\begin{split} \boldsymbol{\ell_{h+1}} &= \boldsymbol{\ell_h} + d_h + O(\log w + \log \varepsilon_{\text{Ext}}^{-1}) \\ &= \boldsymbol{\ell_h} + O(\log \ell_h + \log \varepsilon_{\text{Ext}}^{-1}) + O(\log w + \log \varepsilon_{\text{Ext}}^{-1}) \\ &= O(h \cdot (\log w + \log \varepsilon_{\text{Ext}}^{-1})). \end{split}$$

And since the error develops as

$$\varepsilon(h) = 2\varepsilon(h-1) + \varepsilon_{\text{Ext}} = 2^h \cdot \varepsilon_{\text{Ext}},$$

so $\varepsilon = \varepsilon(\log n) = n \cdot \varepsilon_{\text{Ext}}$ forces seed length

$$s_{\text{INW}} \stackrel{\text{def}}{=} \ell_{\log n} = O(\log n \cdot (\log n + \log w + \log \varepsilon^{-1}))$$

Oren Renard Master's Thesis Presentation 20 / 56

The PRG INW_{h+1}: $\{0,1\}^{\ell_{h+1}} \times \{0,1\}^{d_{h+1}} \to \{0,1\}^{m_h}$ defined as

$$\begin{split} \text{INW}_{h+1}(x \circ y) &\stackrel{\text{def}}{=} \text{INW}(x) \circ \text{INW}(\text{Ext}_h(x,y)) \\ \text{INW}_1(x) &\stackrel{\text{def}}{=} x_0 \end{split}$$

where $\operatorname{Ext}_{h+1}: \{0,1\}^{\ell_{h+1}} \times \{0,1\}^{d_{h+1}} \to \{0,1\}^{m_h}$ is a $(k_{h+1},\varepsilon_{\operatorname{Ext}})$ extractor. Parameters.

- 1 The entropy is set to $k_{h+1} = \ell_{h+1} O(\log w + \log \varepsilon_{\text{Ext}}^{-1})$.
- **②** Using optimal extractors, $m_h = k_{h+1} O(\log \varepsilon_{\text{Ext}}^{-1})$ and $d_h = O(\log \ell_h + \log \varepsilon_{\text{Ext}}^{-1})$.

Thus, the seed develops as

$$\begin{split} \boldsymbol{\ell_{h+1}} &= \boldsymbol{\ell_h} + d_h + O(\log w + \log \varepsilon_{\text{Ext}}^{-1}) \\ &= \boldsymbol{\ell_h} + O(\log \ell_h + \log \varepsilon_{\text{Ext}}^{-1}) + O(\log w + \log \varepsilon_{\text{Ext}}^{-1}) \\ &= O(h \cdot (\log w + \log \varepsilon_{\text{Ext}}^{-1})). \end{split}$$

And since the error develops as

$$\varepsilon(h) = 2\varepsilon(h-1) + \varepsilon_{\text{Ext}} = 2^h \cdot \varepsilon_{\text{Ext}},$$

so
$$\varepsilon = \varepsilon(\log n) = n \cdot \varepsilon_{\text{Ext}}$$
 forces seed length

$$s_{\text{INW}} \stackrel{\text{def}}{=} \ell_{\log n} = O(\log n \cdot (\log n + \log w + \log \varepsilon^{-1}))$$

Oren Renard Master's Thesis Presentation 20 / 56

Table of Contents

- Space vs. Randomness
- Motivation, Goals and Results
- On Raz and Reingold [RR99] PRG
 - Brief overview of [INW94]
 - [RR99] Assumptions, Doubts and Answers
 - Overview of [RR99]
- 4 Error Reduction For WPRGs Against ROBPs [CDR+21]
 - Matrix Powering, PRGs and Laplacians inverses
 - Richardson Iterations
 - Error Reduction for PRGs
 - Subsequent work
- Future Directions

The cause for seed length $\Omega(\log n \cdot \log w)$

The entropy is set to $k_{h+1} = \ell_{h+1} - O(\log w + \log \varepsilon_{\mathrm{Ext}}^{-1})$.

The cause for seed length $\Omega(\log n \cdot \log w)$

The entropy is set to $k_{h+1} = \ell_{h+1} - O(\log w + \log \varepsilon_{\mathrm{Ext}}^{-1})$.

Question. Do we have to lose $\log w$ entropy at each recursion level to recycle X?

The cause for seed length $\Omega(\log n \cdot \log w)$

The entropy is set to $k_{h+1} = \ell_{h+1} - O(\log w + \log \varepsilon_{\mathrm{Ext}}^{-1})$.

Question. Do we have to lose $\log w$ entropy at each recursion level to recycle X? **Relaxed Question.** Could we do better given that we know how much the machine learnt?

The cause for seed length $\Omega(\log n \cdot \log w)$

The entropy is set to $k_{h+1} = \ell_{h+1} - O(\log w + \log \varepsilon_{\mathrm{Ext}}^{-1})$.

Question. Do we have to lose $\log w$ entropy at each recursion level to recycle X? **Relaxed Question.** Could we do better given that we know how much the machine learnt?

Definition (Estimator)

$$A:\{(n,w)\;\mathsf{BP}\}\times[nw]^2\to\mathbb{R}^+$$
 is called an (n,w,r) estimator if for every two states $a,b,$

$$2^{-r} \cdot p_{\mathbf{a},b} \le A(M, \mathbf{a}, b) \le 2^{r} \cdot p_{\mathbf{a},b},$$

where, by denoting the layers distance of them as t,

$$p_{\boldsymbol{a},b} \stackrel{\text{def}}{=} \Pr[M_{\boldsymbol{a}}(U_t) = b].$$

The cause for seed length $\Omega(\log n \cdot \log w)$

The entropy is set to $k_{h+1} = \ell_{h+1} - O(\log w + \log \varepsilon_{\text{Ext}}^{-1})$.

Question. Do we have to lose $\log w$ entropy at each recursion level to recycle X? **Relaxed Question.** Could we do better given that we know how much the machine learnt?

Definition (Estimator)

A: $\{(n,w) \text{ BP}\} \times [nw]^2 \to \mathbb{R}^+$ is called an (n,w,r) estimator if for every two states a,b,

$$2^{-r} \cdot p_{\mathbf{a},b} \le A(M, \mathbf{a}, b) \le 2^{r} \cdot p_{\mathbf{a},b},$$

where, by denoting the layers distance of them as t,

$$p_{\mathbf{a},b} \stackrel{\text{def}}{=} \Pr[M_{\mathbf{a}}(U_t) = b].$$

But thinking about estimation raises doubts...

• There is no known explicit construction of multiplicative error objects,

The cause for seed length $\Omega(\log n \cdot \log w)$

The entropy is set to $k_{h+1} = \ell_{h+1} - O(\log w + \log \varepsilon_{\text{Ext}}^{-1})$.

Question. Do we have to lose $\log w$ entropy at each recursion level to recycle X? **Relaxed Question.** Could we do better given that we know how much the machine learnt?

Definition (Estimator)

 $A:\{(n,w)\;\mathsf{BP}\}\times[nw]^2\to\mathbb{R}^+$ is called an (n,w,r) estimator if for every two states a,b,

$$2^{-r} \cdot p_{\mathbf{a},b} \le A(M, \mathbf{a}, b) \le 2^r \cdot p_{\mathbf{a},b},$$

where, by denoting the layers distance of them as t,

$$p_{\mathbf{a},b} \stackrel{\text{def}}{=} \Pr[M_{\mathbf{a}}(U_t) = b].$$

But thinking about estimation raises doubts...

- There is no known explicit construction of multiplicative error objects,
- The estimator implies multiplicative derandomization, so PRG construction seems irrelevant.

Oren Renard Master's Thesis Presentation 22 / 56

Doubts about estimators

- There is no known explicit construction of multiplicative error objects,
- **②** The estimator implies multiplicative derandomization, so PRG construction seems irrelevant.

We resolve the issues:

Doubts about estimators

- There is no known explicit construction of multiplicative error objects,
- The estimator implies multiplicative derandomization, so PRG construction seems irrelevant.

We resolve the issues:

1 They do exists: a simple reduction of "der. alg \Longrightarrow estimators".

Doubts about estimators

- There is no known explicit construction of multiplicative error objects,
- 2 The estimator implies multiplicative derandomization, so PRG construction seems irrelevant.

We resolve the issues:

- They do exists: a simple reduction of "der. alg ⇒ estimators".
- PRGs are much more powerful than derandomizations! (as Saks and Zhou [SZ99] showed us)

Doubts about estimators

- There is no known explicit construction of multiplicative error objects,
- ② The estimator implies multiplicative derandomization, so PRG construction seems irrelevant.

We resolve the issues:

- They do exists: a simple reduction of "der. alg ⇒ estimators".
 - PRGs are much more powerful than derandomizations! (as Saks and Zhou [SZ99] showed us)
 - We combine solution (1) with recent developments to conclude a new white box Weighted PRG

Let A be an $(n,w,arepsilon_{\mathbb{A}})$ (additive) derandomization, M be an (n,w) BP with two states s,t. We wish to compute $\overline{p_{s,t}}$ s.t.

$$2^{-r} \cdot p_{s,t} \le \widetilde{p_{s,t}} \le 2^r \cdot p_{s,t}.$$

Let A be an $(n,w,\varepsilon_{\mathbb{A}})$ (additive) derandomization, M be an (n,w) BP with two states s,t. We wish to compute $\widetilde{p_{s,t}}$ s.t.

$$2^{-r} \cdot p_{s,t} \le \widetilde{p_{s,t}} \le 2^r \cdot p_{s,t}.$$

Set $\widetilde{p_{s,t}} \stackrel{\text{def}}{=} \mathrm{A}(M,s,t)$, and due to A promise,

$$2^{-r} \cdot p_{s,t} \le p_{s,t} \pm \varepsilon_{\mathbf{A}} \le 2^{r} \cdot p_{s,t} \implies r \ge \log\left(1 \pm \frac{\varepsilon_{\mathbf{A}}}{p_{s,t}}\right).$$

Clearly $\varepsilon_{\mathbb{A}} = O(p_{s,t})$ implies (multiplicative) estimation of r = O(1).

Let A be an $(n,w,\varepsilon_{\mathbb{A}})$ (additive) derandomization, M be an (n,w) BP with two states s,t. We wish to compute $\widetilde{p_{s,t}}$ s.t.

$$2^{-r} \cdot p_{s,t} \le \widetilde{p_{s,t}} \le 2^r \cdot p_{s,t}.$$

Set $\widetilde{p_{s,t}} \stackrel{\text{def}}{=} \mathrm{A}(M,s,t)$, and due to A promise,

$$2^{-r} \cdot p_{s,t} \le p_{s,t} \pm \varepsilon_{\mathbf{A}} \le 2^{r} \cdot p_{s,t} \implies r \ge \log\left(1 \pm \frac{\varepsilon_{\mathbf{A}}}{p_{s,t}}\right).$$

Clearly $\varepsilon_{\mathbf{A}}=O(p_{s,t})$ implies (multiplicative) estimation of r=O(1). While potentially $p_{s,t}=2^{-\Theta(n)}$, its easy to discard such low probabilities in the analysis.

PRG Analysis

Say we wish to construct an $(n, w, \varepsilon_{\mathbf{G}})$ PRG G.

By setting $\boldsymbol{\varepsilon_G} \leftarrow \boldsymbol{\varepsilon_G} + \boldsymbol{\gamma} \cdot \boldsymbol{nw}$, one may assume that always

$$p_{s,t} = \Pr[M_s(U) = t] > \gamma.$$

Let A be an $(n,w,\varepsilon_{\mathbb{A}})$ (additive) derandomization, M be an (n,w) BP with two states s,t. We wish to compute $\overline{p_{s,t}}$ s.t.

$$2^{-r} \cdot p_{s,t} \le \widetilde{p_{s,t}} \le 2^r \cdot p_{s,t}.$$

Set $\widetilde{p_{s,t}} \stackrel{\text{def}}{=} \mathrm{A}(M,s,t)$, and due to A promise,

$$2^{-r} \cdot p_{s,t} \le p_{s,t} \pm \varepsilon_{\mathbf{A}} \le 2^{r} \cdot p_{s,t} \implies r \ge \log\left(1 \pm \frac{\varepsilon_{\mathbf{A}}}{p_{s,t}}\right).$$

Clearly $\varepsilon_{\mathbb{A}} = O(p_{s,t})$ implies (multiplicative) estimation of r = O(1). While potentially $p_{s,t} = 2^{-\Theta(n)}$, its easy to discard such low probabilities in the analysis.

PRG Analysis

Say we wish to construct an (n, w, ε_G) PRG G.

By setting $\boldsymbol{\varepsilon_G} \leftarrow \boldsymbol{\varepsilon_G} + \gamma \cdot n\boldsymbol{w}$, one may assume that always

$$p_{s,t} = \Pr[M_s(U) = t] > \gamma.$$

Thus,

$$r = O(\varepsilon_{\rm A}/\gamma).$$

Parameters. Set $\gamma = 1/nw$ and let A be [SZ99] with $\varepsilon_A = 1/nw \implies r = O(1)$.

Oren Renard Master's Thesis Presentation 24 / 56

A New PRG

First, we conclude an explicit white box PRG from [RR99] using [SZ99] as an estimator:

Theorem (PRG based [RR99])

There exists an (n, w, ε) white box PRG with seed length

$$\mathsf{s}_{\mathsf{RR}} = \widetilde{O}(\log n \cdot (\log n + \log \varepsilon^{-1}) + \log w),$$

that is computable in space

$$\widetilde{O}(\log n \cdot (\log n + \log \varepsilon^{-1}) + \sqrt{\log n} \cdot (\log w)).$$

A New PRG

First, we conclude an explicit white box PRG from [RR99] using [SZ99] as an estimator:

Theorem (PRG based [RR99])

There exists an $(n, \mathbf{w}, \varepsilon)$ white box PRG with seed length

$$\mathsf{s}_{\mathsf{RR}} = \widetilde{O}(\log n \cdot (\log n + \log \varepsilon^{-1}) + \log w),$$

that is computable in space

$$\widetilde{O}(\log n \cdot (\log n + \log \varepsilon^{-1}) + \sqrt{\log n} \cdot (\log w)).$$

Now use the black box error reduction of [CDR+21; PV21] to conclude:**

Theorem

There exists an (n, w, ε) white box Weighted-PRG with seed length

$$s = \widetilde{O}(\log n \cdot (\log n) + \log w + \log \varepsilon^{-1}),$$

that is computable in space

$$\widetilde{O}(\log n \cdot (\log n) + \sqrt{\log n} \cdot (\log w) + \log \varepsilon^{-1}).$$

Oren Renard Master's Thesis Presentation 25 / 56

A New PRG

First, we conclude an explicit white box PRG from [RR99] using [SZ99] as an estimator:

Theorem (PRG based [RR99])

There exists an (n, w, ε) white box PRG with seed length

$$s_{RR} = \widetilde{O}(\log n \cdot (\log n + \log \varepsilon^{-1}) + \log w),$$

that is computable in space

$$\widetilde{O}(\log n \cdot (\log n + \log \varepsilon^{-1}) + \sqrt{\log n \cdot (\log w)}).$$

Now use the black box error reduction of [CDR+21; PV21] to conclude:**

Theorem

There exists an (n, w, ε) white box Weighted-PRG with seed length

$$s = \widetilde{O}(\log n \cdot (\log n) + \log w + \log \varepsilon^{-1}),$$

that is computable in space

$$\widetilde{O}(\log n \cdot (\log n) + \sqrt{\log n \cdot (\log w)} + \log \varepsilon^{-1}).$$

Oren Renard Master's Thesis Presentation 25 / 56

Table of Contents

- Space vs. Randomness
- Motivation, Goals and Results
- On Raz and Reingold [RR99] PRG
 - Brief overview of [INW94]
 - [RR99] Assumptions, Doubts and Answers
 - Overview of [RR99]
- Error Reduction For WPRGs Against ROBPs [CDR+21]
 - Matrix Powering, PRGs and Laplacians inverses
 - Richardson Iterations
 - Error Reduction for PRGs
 - Subsequent work
- Future Directions

Preliminaries

Notations:

- **①** For any event E, we define $\mathbf{H}(E) = \log \frac{1}{\Pr[E]}$.
- $\textbf{②} \ \, \text{For every} \, \, {\color{red} q} \in [n] \, \, \text{and} \, \, s \in [w],$

$$S^{\mathrm{ideal,q}}(s) \stackrel{\mathsf{def}}{=} \Pr[M_{s_{\mathrm{init}}}(U_{\textcolor{red}{q}}) = s].$$

- **③** For simplicity, assume A is an (n, w, r = 0) perfect estimator.
- The estimated entropy of a given state is

$$\widetilde{\mathbf{H}}(s) \stackrel{\mathsf{def}}{=} \log \frac{1}{\mathrm{A}(M, s_{\mathrm{init}}, s)},$$

and since A is perfect,

$$\widetilde{\mathbf{H}}(s) = \log \frac{1}{\mathbf{A}(M, s_{\mathrm{init}}, s)} = \log \frac{1}{S^{\mathrm{ideal,q}}(s)} = \mathbf{H}(S^{\mathrm{ideal,q}} = s).$$

Preliminaries

Notations:

- **①** For any event E, we define $\mathbf{H}(E) = \log \frac{1}{\Pr[E]}$.
- $\textbf{@} \ \text{For every } \textbf{\textit{q}} \in [n] \ \text{and} \ s \in [w],$

$$S^{\mathrm{ideal,q}}(s) \stackrel{\mathsf{def}}{=} \Pr[M_{s_{\mathrm{init}}}(U_{\textcolor{red}{q}}) = s].$$

- **③** For simplicity, assume A is an (n, w, r = 0) perfect estimator.
- The estimated entropy of a given state is

$$\widetilde{\mathbf{H}}(s) \stackrel{\mathsf{def}}{=} \log \frac{1}{\mathrm{A}(M, s_{\mathrm{init}}, s)},$$

and since A is perfect,

$$\widetilde{\mathbf{H}}(s) = \log \frac{1}{\mathrm{A}(M, s_{\mathrm{init}}, s)} = \log \frac{1}{S^{\mathrm{ideal}, \mathrm{q}}(s)} = \mathbf{H}(S^{\mathrm{ideal}, \mathrm{q}} = s).$$

The PRG

Begin with the INW PRG, and we modify it gradually:

$$G(x,y) \stackrel{\mathsf{def}}{=} G^{\mathcal{A}}(x,y) \stackrel{\mathsf{def}}{=} x \circ \operatorname{Ext}(x,y).$$

Oren Renard Master's Thesis Presentation 27 / 56

Analysis.

Let $X \circ Y \sim U_{n+d}$. Let $S_{\text{mid}}^{\text{ideal}}, S_{\text{mid}}^{\text{gen}}$ be state distribution after walking via U_n or $G^{A}(X)$.

Analysis.

Let $X \circ Y \sim U_{n+d}$. Let $S_{\text{mid}}^{\text{ideal}}, S_{\text{mid}}^{\text{gen}}$ be state distribution after walking via U_n or $G^{A}(X)$.

Entropy analysis. Sample $s_{
m mid} \sim S_{
m mid}^{
m gen}$ and observe,

$$\begin{aligned} k_{s_{\text{mid}}} &= \mathbf{H}_{\infty}(X \mid S_{\text{mid}}^{\text{gen}} = s_{\text{mid}}) \geq \mathbf{H}_{\infty}(X) - \log \frac{1}{\Pr[S_{\text{mid}}^{\text{gen}} = s_{\text{mid}}]} \\ &= n - \mathbf{H}(S_{\text{mid}}^{\text{gen}} = s_{\text{mid}}). \end{aligned}$$

Analysis.

Let $X \circ Y \sim U_{n+d}$. Let $S_{\text{mid}}^{\text{ideal}}, S_{\text{mid}}^{\text{gen}}$ be state distribution after walking via U_n or $G^{A}(X)$.

Entropy analysis. Sample $s_{
m mid} \sim S_{
m mid}^{
m gen}$ and observe,

$$k_{s_{\text{mid}}} = \mathbf{H}_{\infty}(X \mid S_{\text{mid}}^{\text{gen}} = s_{\text{mid}}) \ge \mathbf{H}_{\infty}(X) - \log \frac{1}{\Pr[S_{\text{mid}}^{\text{gen}} = s_{\text{mid}}]}$$
$$= n - \mathbf{H}(S_{\text{mid}}^{\text{gen}} = s_{\text{mid}}).$$

Now note:

- $\widetilde{\mathbf{H}}(s_{\mathrm{mid}}) = \mathbf{H}(S_{\mathrm{mid}}^{\mathrm{ideal}} = s_{\mathrm{mid}})$ since the estimator is perfect,

Analysis.

Let $X \circ Y \sim U_{n+d}$. Let $S_{\text{mid}}^{\text{ideal}}, S_{\text{mid}}^{\text{gen}}$ be state distribution after walking via U_n or $G^{A}(X)$.

Entropy analysis. Sample $s_{
m mid} \sim S_{
m mid}^{
m gen}$ and observe,

$$k_{s_{\text{mid}}} = \mathbf{H}_{\infty}(X \mid S_{\text{mid}}^{\text{gen}} = s_{\text{mid}}) \ge \mathbf{H}_{\infty}(X) - \log \frac{1}{\Pr[S_{\text{mid}}^{\text{gen}} = s_{\text{mid}}]}$$
$$= n - \mathbf{H}(S_{\text{mid}}^{\text{gen}} = s_{\text{mid}}).$$

Now note:

- $SD(S_{mid}^{ideal}, S_{mid}^{gen}) = 0$ since X is uniform,
- $m{\Theta}$ $\widetilde{\mathbf{H}}(s_{\mathrm{mid}}) = \mathbf{H}(S_{\mathrm{mid}}^{\mathrm{ideal}} = s_{\mathrm{mid}})$ since the estimator is perfect,

$$\implies$$
 $\widetilde{\mathbf{H}}(s_{\mathrm{mid}}) = \mathbf{H}(S_{\mathrm{mid}}^{\mathrm{gen}} = s_{\mathrm{mid}}) \implies k_{s_{\mathrm{mid}}}$ is computable

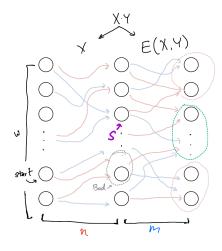


Figure: INW

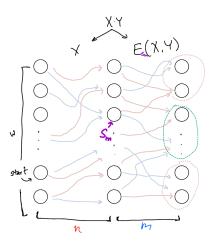


Figure: G^{A}

Oren Renard

So we summarize:

- $k_{\text{INW}} = n \log w \log \varepsilon^{-1} 1.$

Is it always the case $k_{s_{\mathrm{mid}}} \gg k_{\mathrm{INW}}$?

So we summarize:

$$k_{\text{INW}} = n - \log w - \log \varepsilon^{-1} - 1.$$

Is it always the case $k_{s_{\rm mid}} \gg k_{\rm INW}$?

Depends on $\widetilde{\mathbf{H}}(s_{\mathrm{mid}})$... Actually, it could be $k_{s_{\mathrm{mid}}} \ll k_{\mathrm{INW}}!$

Discarding states with low probability.

Using the same trick as before, we discard all states that satisfies

$$S^{\text{ideal,q}}(s) \le \varepsilon/(2 \cdot (n+m)w)$$

and so increase G error by

$$<(n+m)w\cdot\varepsilon/(2\cdot(n+m)w)=\varepsilon/2.$$

So we summarize:

$$k_{\text{INW}} = n - \log w - \log \varepsilon^{-1} - 1.$$

Is it always the case $k_{s_{\rm mid}} \gg k_{\rm INW}$?

Depends on $\widetilde{\mathbf{H}}(s_{\mathrm{mid}})$... Actually, it could be $k_{s_{\mathrm{mid}}} \ll k_{\mathrm{INW}}!$

Discarding states with low probability.

Using the same trick as before, we discard all states that satisfies

$$S^{\text{ideal,q}}(s) \le \varepsilon/(2 \cdot (n+m)w)$$

and so increase G error by

$$<(n+m)w\cdot\varepsilon/(2\cdot(n+m)w)=\varepsilon/2.$$

Now we can bound for every $s_{\text{mid}} \in \text{supp}(S_{\text{mid}}^{\text{gen}})$:

$$k_{s_{\text{mid}}} = n - \widetilde{\mathbf{H}}(s_{\text{mid}}) \ge n - \log w - \log \varepsilon^{-1} - 1 - \log n - \log m.$$

so we gained nothing...

Oren Renard

Master's Thesis Presentation

30 / 56

Observation: when we condition the source on s_{mid} , the input state s_{in} is no longer conditioned.

Observation: when we condition the source on s_{\min} , the input state s_{\min} is no longer conditioned. **The idea:** recycle s_{\min} when going right, i.e. $\operatorname{Ext}(X \circ s_{\min}, Y)$.

Observation: when we condition the source on s_{mid} , the input state s_{in} is no longer conditioned. **The idea:** recycle s_{in} when going right, i.e. $\text{Ext}(X \circ s_{\text{in}}, Y)$.

The input length

Let $s \in [nw]$. Define $\ell_s \stackrel{\text{def}}{=} \mathbf{n} - \widetilde{\mathbf{H}}(s)$.

The input source X is redefined to have length $\ell_{S_{\mathrm{in}}^{\mathrm{ideal}}}$, i.e. random variable.

Observation: when we condition the source on s_{mid} , the input state s_{in} is no longer conditioned. **The idea:** recycle s_{in} when going right, i.e. $\text{Ext}(X \circ s_{\text{in}}, Y)$.

The input length

Let $s \in [nw]$. Define $\ell_s \stackrel{\text{def}}{=} \frac{\mathbf{n}}{\mathbf{n}} - \widetilde{\mathbf{H}}(s)$.

The input source X is redefined to have length $\ell_{S_{
m in}^{
m ideal}}$, i.e. $\it random\ variable.$

The input to the PRG is now $S_{\mathrm{in}}^{\mathrm{ideal}} \circ X$.

Observation: when we condition the source on s_{mid} , the input state s_{in} is no longer conditioned. **The idea:** recycle s_{in} when going right, i.e. $\text{Ext}(X \circ s_{\text{in}}, Y)$.

The input length

Let $s \in [nw]$. Define $\ell_s \stackrel{\text{def}}{=} \frac{\mathbf{n}}{\mathbf{n}} - \widetilde{\mathbf{H}}(s)$.

The input source X is redefined to have length $\ell_{S_{
m in}^{
m ideal}}$, i.e. random variable.

The input to the PRG is now $S_{\mathrm{in}}^{\mathrm{ideal}} \circ X$.

What is $\mathbf{H}_{\infty}(S_{\mathrm{in}}^{\mathrm{ideal}} \circ X)$?

Observation: when we condition the source on s_{mid} , the input state s_{in} is no longer conditioned. **The idea:** recycle s_{in} when going right, i.e. $\mathrm{Ext}(X \circ s_{\mathrm{in}}, Y)$.

The input length

Let $s \in [nw]$. Define $\ell_s \stackrel{\text{def}}{=} \frac{\mathbf{n}}{\mathbf{n}} - \widetilde{\mathbf{H}}(s)$.

The input source X is redefined to have length $\ell_{S_{ ext{in}}^{ ext{ideal}}}$, i.e. $\mathit{random\ variable}.$

The input to the PRG is now $S_{in}^{ideal} \circ X$.

What is $\mathbf{H}_{\infty}(S_{\mathrm{in}}^{\mathrm{ideal}} \circ X)$?

$$\mathbf{H}_{\infty}(S_{\mathrm{in}}^{\mathrm{ideal}} \circ X) = \mathbf{n}$$

We circumvent the min entropy definition and use **H** instead. For every $s_{in} \circ x$,

$$\begin{aligned} \mathbf{H}(S_{\text{in}}^{\text{ideal}} \circ X = s_{\text{in}} \circ x) &= \mathbf{H}(S_{\text{in}}^{\text{ideal}} = s_{\text{in}}) + \ell_{s_{\text{in}}} \\ &= \mathbf{H}(S_{\text{in}}^{\text{ideal}} = s_{\text{in}}) + \mathbf{n} - \widetilde{\mathbf{H}}(s_{\text{in}}) \\ &= \mathbf{n}. \end{aligned}$$

Oren Renard Master's Thesis Presentation 31 / 56

Reminder

Let $s \in [nw]$. Define $\ell_s \stackrel{\text{def}}{=} n - \widetilde{\mathbf{H}}(s)$.

 $\text{Let } X \circ Y \sim U_{\ell_{S_{1}^{\text{ideal}}}} \times U_{d}. \text{ Let } S_{\text{mid}}^{\text{ideal}}, S_{\text{mid}}^{\text{gen}} \text{ be state distribution after walking via } U_{n} \text{ or } G^{\mathcal{A}}(X).$

Reminder

Let $s \in [nw]$. Define $\ell_s \stackrel{\text{def}}{=} n - \widetilde{\mathbf{H}}(s)$.

Let $X \circ Y \sim U_{\ell_{S_{\mathrm{ideal}}}^{\mathrm{ideal}}} \times U_d$. Let $S_{\mathrm{mid}}^{\mathrm{ideal}}, S_{\mathrm{mid}}^{\mathrm{gen}}$ be state distribution after walking via U_n or $G^{\mathrm{A}}(X)$.

Since X is uniform,

$$SD(S_{\text{mid}}^{\text{ideal}}, S_{\text{mid}}^{\text{gen}}) = 0.$$

Let $s_{\text{mid}} \sim S_{\text{mid}}^{\text{gen}}$.

Reminder

Let $s \in [nw]$. Define $\ell_s \stackrel{\text{def}}{=} n - \widetilde{\mathbf{H}}(s)$.

Let $X \circ Y \sim U_{\ell_{S_{\mathrm{int}}^{\mathrm{ideal}}}} \times U_d$. Let $S_{\mathrm{mid}}^{\mathrm{ideal}}, S_{\mathrm{mid}}^{\mathrm{gen}}$ be state distribution after walking via U_n or $G^{\mathrm{A}}(X)$.

Since X is uniform,

$$SD(S_{\text{mid}}^{\text{ideal}}, S_{\text{mid}}^{\text{gen}}) = 0.$$

Let $s_{\text{mid}} \sim S_{\text{mid}}^{\text{gen}}$.

Analyzing the entropy. What is $\mathbf{H}_{\infty}(S_{\mathrm{in}}^{\mathrm{ideal}} \circ X \mid S_{\mathrm{mid}}^{\mathrm{gen}} = s_{\mathrm{mid}})$?

Reminder

Let $s \in [nw]$. Define $\ell_s \stackrel{\text{def}}{=} n - \widetilde{\mathbf{H}}(s)$.

 $\text{Let } X \circ Y \sim U_{\ell_{S_{\text{in}}^{\text{ideal}}}} \times U_d. \text{ Let } S_{\text{mid}}^{\text{ideal}}, S_{\text{mid}}^{\text{gen}} \text{ be state distribution after walking via } U_n \text{ or } G^{\mathcal{A}}(X).$

Since X is uniform,

$$SD(S_{\text{mid}}^{\text{ideal}}, S_{\text{mid}}^{\text{gen}}) = 0.$$

Let $s_{\text{mid}} \sim S_{\text{mid}}^{\text{gen}}$.

Analyzing the entropy. What is $\mathbf{H}_{\infty}(S_{\mathrm{in}}^{\mathrm{ideal}} \circ X \mid S_{\mathrm{mid}}^{\mathrm{gen}} = s_{\mathrm{mid}})$?

$$\mathbf{H}_{\infty}(S_{\mathrm{in}}^{\mathrm{ideal}} \circ X \mid S_{\mathrm{mid}}^{\mathrm{gen}} = s_{\mathrm{mid}}) = \ell_{s_{\mathrm{mid}}}$$

We again circumvent H_{∞} with H:

$$\begin{split} &\mathbf{H}(S_{\text{in}}^{\text{ideal}} \circ X = s_{\text{in}} \circ x \mid S_{\text{mid}}^{\text{gen}} = s_{\text{mid}}) \\ & \geq \mathbf{H}(S_{\text{in}}^{\text{ideal}} \circ X = s_{\text{in}} \circ x) - \mathbf{H}(S_{\text{mid}}^{\text{gen}} = s_{\text{mid}}) \\ & = \mathbf{H}(S_{\text{in}}^{\text{ideal}} = s_{\text{in}}) + \ell_{s_{\text{in}}} - \mathbf{H}(S_{\text{mid}}^{\text{gen}} = s_{\text{mid}}) \\ & = \mathbf{H}(S_{\text{in}}^{\text{ideal}} = s_{\text{in}}) + \ell_{s_{\text{in}}} - \mathbf{H}(S_{\text{mid}}^{\text{ideal}} = s_{\text{mid}}) \\ & = \ell_{s_{\text{mid}}} + (\ell_{s_{\text{in}}} - \ell_{s_{\text{mid}}}) + \mathbf{H}(S_{\text{in}}^{\text{ideal}} = s_{\text{in}}) - \mathbf{H}(S_{\text{mid}}^{\text{ideal}} = s_{\text{mid}}) \\ & = \ell_{s_{\text{mid}}} + (-\widetilde{\mathbf{H}}(s_{\text{in}}) + \widetilde{\mathbf{H}}(s_{\text{mid}})) + \mathbf{H}(S_{\text{in}}^{\text{ideal}} = s_{\text{in}}) - \mathbf{H}(S_{\text{mid}}^{\text{ideal}} = s_{\text{mid}}) \\ & = \ell_{s_{\text{mid}}} \end{split}$$

One step of recycling (cont.)

Reminder

Let $s \in [nw]$. Define $\ell_s \stackrel{\text{def}}{=} n - \widetilde{\mathbf{H}}(s)$.

We want to recycle $(S_{\mathrm{in}}^{\mathrm{ideal}} \circ X \mid S_{\mathrm{mid}}^{\mathrm{gen}} = s_{\mathrm{mid}})$. We choose $(k_{s_{\mathrm{mid}}} = \ell_{s_{\mathrm{mid}}}, \varepsilon)$ extractor

$$\mathrm{Ext}_{^{S}_{\mathrm{mid}}}: \{0,1\}^{n'_{S^{\mathrm{ideal}}_{\mathrm{in}}}} \times \{0,1\}^{d} \rightarrow \{0,1\}^{m}$$

where

$$n_{S_{ ext{in}}^{ ext{ideal}}}' = \log(nw) + \ell_{S_{ ext{in}}^{ ext{ideal}}}$$

Using optimal extractors,

$$m = k_{s_{ ext{mid}}} - O(\log(1/arepsilon)) = \ell_{s_{ ext{mid}}} - O(\log(1/arepsilon))$$
 $d = O(\log(n'_{S_{ ext{ideal}}/arepsilon})) = O(\log n + \log(1/arepsilon) + \log\log w)$

One step of recycling (cont.)

Reminder

Let $s \in [nw]$. Define $\ell_s \stackrel{\text{def}}{=} n - \widetilde{\mathbf{H}}(s)$.

We want to recycle $(S_{\mathrm{in}}^{\mathrm{ideal}} \circ X \mid S_{\mathrm{mid}}^{\mathrm{gen}} = s_{\mathrm{mid}})$. We choose $(k_{s_{\mathrm{mid}}} = \ell_{s_{\mathrm{mid}}}, \varepsilon)$ extractor

$$\mathrm{Ext}_{^{S}_{\mathrm{mid}}}: \{0,1\}^{n'_{S^{\mathrm{ideal}}_{\mathrm{in}}}} \times \{0,1\}^d \rightarrow \{0,1\}^m$$

where

$$n_{S_{ ext{in}}^{ ext{ideal}}}' = \log(nw) + \ell_{S_{ ext{in}}^{ ext{ideal}}}$$

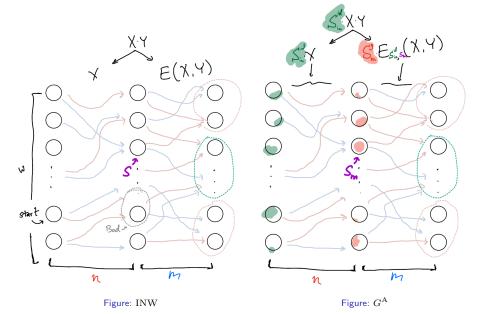
Using optimal extractors,

$$\begin{split} m &= k_{s_{\text{mid}}} - O(\log(1/\varepsilon)) = \ell_{s_{\text{mid}}} - O(\log(1/\varepsilon)) \\ d &= O(\log(n'_{S_{\text{in}}^{\text{ideal}}}/\varepsilon)) = O(\log n + \log(1/\varepsilon) + \log\log w) \end{split}$$

Thus, since the analysis holds for every $s_{\rm mid}$,

$$\begin{split} S_{\text{mid}}^{\text{gen}} \circ \text{Ext}(S_{\text{in}}^{\text{ideal}} \circ X \mid S_{\text{mid}}^{\text{gen}}, Y) &\approx_{\varepsilon} S_{\text{mid}}^{\text{gen}} \circ U_{m_{S_{\text{mid}}^{\text{gen}}}} \\ &= S_{\text{mid}}^{\text{ideal}} \circ U_{m_{S_{\text{mid}}^{\text{ideal}}}} \\ &= S_{\text{mid}}^{\text{ideal}} \circ U_{\ell_{S_{\text{mid}}^{\text{ideal}}}} - O(\log 1/\varepsilon) \end{split}$$

One step of recycling (cont.)



Oren Renard Master's Thesis Presentation 34 / 56

A full construction

In similar fashion to INW, we can devise (n, w, ε) white box PRG with seed length

$$\mathsf{s}_0 = O(\log n \cdot (\log n + \log \varepsilon^{-1} + \log \log w) + \log w)$$

but its space complexity is

$$O(\log n \cdot (s_0 + \log w)) + \operatorname{space}_{\mathcal{A}}(n, w, r = 0)$$

A full construction

In similar fashion to INW, we can devise (n, w, ε) white box PRG with seed length

$$\mathsf{s}_0 = O(\log n \cdot (\log n + \log \varepsilon^{-1} + \log \log w) + \log w)$$

but its space complexity is

$$O(\log n \cdot (s_0 + \log w)) + \operatorname{space}_A(n, w, r = 0)$$

To solve the problems...

- **4** Save only 2 states instead of up to $\log n$ (which multiplied by $\times \log w$)
- Use global buffers to maintain linear space
- Use condensers to collect the extractors unavoidable loss

Table of Contents

- Space vs. Randomness
- Motivation, Goals and Results
- On Raz and Reingold [RR99] PRG
 - Brief overview of [INW94]
 - [RR99] Assumptions, Doubts and Answers
 - Overview of [RR99]
- 4 Error Reduction For WPRGs Against ROBPs [CDR+21]
 - Matrix Powering, PRGs and Laplacians inverses
 - Richardson Iterations
 - Error Reduction for PRGs
 - Subsequent work
- Future Directions

Table of Contents

- Space vs. Randomness
- Motivation, Goals and Results
- On Raz and Reingold [RR99] PRG
 - Brief overview of [INW94]
 - [RR99] Assumptions, Doubts and Answers
 - Overview of [RR99]
- 4 Error Reduction For WPRGs Against ROBPs [CDR+21]
 - Matrix Powering, PRGs and Laplacians inverses
 - Richardson Iterations
 - Error Reduction for PRGs
 - Subsequent work
- Future Directions

Stochastic Matrix Powering and Derandomization

Let M be (n, w) BP.

- **①** By increasing the width $w \mapsto \text{poly}(n, w)$, wlog all layers are identical.
- $oldsymbol{@}$ Abuse notation to denote $oldsymbol{M}$ the stochastic $\emph{transition matrix}$ of every layer.
- The derandomization task is equivalent to approximation of

$$\mathbf{M}^n = \mathop{\mathbb{E}}_{\sigma \sim \{0,1\}^n} \mathbf{M}^{(\sigma)}$$

where
$$\mathbf{M}^{(\sigma)} = \mathbf{M}^{(\sigma_1)} \cdots \mathbf{M}^{(\sigma_n)}$$
.

 $\bullet \text{ We use } \|\cdot\| \text{ as the infinity norm, i.e. } \|\mathbf{M}\| \stackrel{\text{def}}{=} \max_{j \in [\boldsymbol{w}]} \sum_{i \in [\boldsymbol{w}]} |\mathbf{M}_{i,j}|.$

Stochastic Matrix Powering and Derandomization

Let M be (n, w) BP.

- **1** By increasing the width $\mathbf{w} \mapsto \operatorname{poly}(\mathbf{n}, \mathbf{w})$, wlog all layers are identical.
- ${\color{red} \textbf{@}}$ Abuse notation to denote \mathbf{M} the stochastic transition matrix of every layer.
- The derandomization task is equivalent to approximation of

$$\mathbf{M}^n = \underset{\sigma \sim \{0,1\}^n}{\mathbb{E}} \mathbf{M}^{(\sigma)}$$

where $\mathbf{M}^{(\sigma)} = \mathbf{M}^{(\sigma_1)} \cdots \mathbf{M}^{(\sigma_n)}$.

 $\bullet \ \ \text{We use} \ \|\cdot\| \ \text{as the infinity norm, i.e.} \ \ \|\mathbf{M}\| \stackrel{\text{def}}{=} \max_{j \in [\textbf{\textit{w}}]} \sum_{i \in [\textbf{\textit{w}}]} |\mathbf{M}_{i,j}|.$

Redefining PRG and WPRG

An $(n, \mathbf{w}, \boldsymbol{\varepsilon})$ PRG $G: \{0, 1\}^s \to \{0, 1\}^n$ satisfies

$$\left\| \underset{\sigma \sim \{0,1\}^n}{\mathbb{E}} [\mathbf{M}^{(\sigma)}] - \underset{x \in \{0,1\}^s}{\mathbb{E}} [\mathbf{M}^{(G(x))}] \right\| \leq \boldsymbol{\varepsilon},$$

An $(n, \mathbf{w}, \varepsilon)$ WPRG $G = (I, \mu) : \{0, 1\}^s \to \mathbb{R} \times \{0, 1\}^n$ satisfies

$$\left\| \underset{\sigma \sim \{0,1\}^n}{\mathbb{E}} [\mathbf{M}^{(\sigma)}] - \underset{x \in \{0,1\}^s}{\mathbb{E}} [\mu(x) \cdot \mathbf{M}^{(I(x))}] \right\| \leq \varepsilon.$$

Inverse of Laplacians

If $\mathbf{I} - \mathbf{A}$ is invertible, then

$$(\mathbf{I} - \mathbf{A})^{-1} = \mathbf{I} + \mathbf{A} + \dots + \mathbf{A}^n + \dots$$

Inverse of Laplacians

If I - A is invertible, then

$$(\mathbf{I} - \mathbf{A})^{-1} = \mathbf{I} + \mathbf{A} + \ldots + \mathbf{A}^n + \ldots$$

Traced back to [Coo85], there is a simple reduction of "Laplacian inverse ⇒ Matrix powering":

$$\mathbf{P}_4 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \ \mathbf{P}_4 \otimes \mathbf{M} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ \mathbf{M} & 0 & 0 & 0 \\ 0 & \mathbf{M} & 0 & 0 \\ 0 & 0 & \mathbf{M} & 0 \end{pmatrix}, \ (\mathbf{P}_4 \otimes \mathbf{M})^2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \mathbf{M}^2 & 0 & 0 & 0 \\ 0 & \mathbf{M}^2 & 0 & 0 \end{pmatrix}$$

Inverse of Laplacians

If I - A is invertible, then

$$(\mathbf{I} - \mathbf{A})^{-1} = \mathbf{I} + \mathbf{A} + \ldots + \mathbf{A}^n + \ldots$$

Traced back to [Coo85], there is a simple reduction of "Laplacian inverse ⇒ Matrix powering":

$$\mathbf{P}_4 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \ \mathbf{P}_4 \otimes \mathbf{M} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ \mathbf{M} & 0 & 0 & 0 \\ 0 & \mathbf{M} & 0 & 0 \\ 0 & 0 & \mathbf{M} & 0 \end{pmatrix}, \ (\mathbf{P}_4 \otimes \mathbf{M})^2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \mathbf{M}^2 & 0 & 0 & 0 \\ 0 & \mathbf{M}^2 & 0 & 0 \end{pmatrix}$$

so since $(\mathbf{A}\otimes\mathbf{B})^k=\mathbf{A}^k\otimes\mathbf{B}^k$ and $\mathbf{P}_{n+1}^{n+1}=0$,

$$(\mathbf{I} - \mathbf{P}_{n+1} \otimes \mathbf{M})^{-1} = \mathbf{I} + (\mathbf{P}_{n+1} \otimes \mathbf{M}) + (\mathbf{P}_{n+1} \otimes \mathbf{M})^{2} + \dots (\mathbf{P}_{n+1} \otimes \mathbf{M})^{n} + \dots$$
$$= \mathbf{I} + (\mathbf{P}_{n+1} \otimes \mathbf{M}) + \dots + (\mathbf{P}_{n+1} \otimes \mathbf{M})^{n}$$
$$= \mathbf{I} + (\mathbf{P}_{n+1} \otimes \mathbf{M}) + \dots + (\mathbf{P}_{n+1}^{n} \otimes \mathbf{M}^{n})$$

Oren Renard

Inverse of Laplacians

If I - A is invertible, then

$$(\mathbf{I} - \mathbf{A})^{-1} = \mathbf{I} + \mathbf{A} + \ldots + \mathbf{A}^n + \ldots$$

Traced back to [Coo85], there is a simple reduction of "Laplacian inverse \Longrightarrow Matrix powering":

$$\mathbf{P}_4 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \ \mathbf{P}_4 \otimes \mathbf{M} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ \mathbf{M} & 0 & 0 & 0 \\ 0 & \mathbf{M} & 0 & 0 \\ 0 & 0 & \mathbf{M} & 0 \end{pmatrix}, \ (\mathbf{P}_4 \otimes \mathbf{M})^2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \mathbf{M}^2 & 0 & 0 & 0 \\ 0 & \mathbf{M}^2 & 0 & 0 \end{pmatrix}$$

so since $(\mathbf{A}\otimes\mathbf{B})^k=\mathbf{A}^k\otimes\mathbf{B}^k$ and $\mathbf{P}_{n+1}^{n+1}=0$,

$$(\mathbf{I} - \mathbf{P}_{n+1} \otimes \mathbf{M})^{-1} = \mathbf{I} + (\mathbf{P}_{n+1} \otimes \mathbf{M}) + (\mathbf{P}_{n+1} \otimes \mathbf{M})^{2} + \dots (\mathbf{P}_{n+1} \otimes \mathbf{M})^{n} + \dots$$

$$= \mathbf{I} + (\mathbf{P}_{n+1} \otimes \mathbf{M}) + \dots + (\mathbf{P}_{n+1} \otimes \mathbf{M})^{n}$$

$$= \mathbf{I} + (\mathbf{P}_{n+1} \otimes \mathbf{M}) + \dots + (\mathbf{P}_{n+1}^{n} \otimes \mathbf{M}^{n})$$

Oren Renard

Encoding powers in Laplacians (cont.)

$$(\mathbf{I} - \mathbf{P}_{n+1} \otimes \mathbf{M})^{-1} = \mathbf{I} + (\mathbf{P}_{n+1} \otimes \mathbf{M}) + \ldots + (\mathbf{P}_{n+1}^{n} \otimes \mathbf{M}^{n})$$

As an example,

$$(\mathbf{I} - \mathbf{P}_4 \otimes \mathbf{M})^{-1} = \begin{pmatrix} \mathbf{I} & 0 & 0 & 0 \\ \mathbf{M} & \mathbf{I} & 0 & 0 \\ \mathbf{M}^2 & \mathbf{M} & \mathbf{I} & 0 \\ \mathbf{M}^3 & \mathbf{M}^2 & \mathbf{M} & \mathbf{I} \end{pmatrix}$$

Encoding powers in Laplacians (cont.)

$$(\mathbf{I} - \mathbf{P}_{n+1} \otimes \mathbf{M})^{-1} = \mathbf{I} + (\mathbf{P}_{n+1} \otimes \mathbf{M}) + \ldots + (\mathbf{P}_{n+1}^{n} \otimes \mathbf{M}^{n})$$

As an example,

$$(\mathbf{I} - \mathbf{P}_4 \otimes \mathbf{M})^{-1} = \begin{pmatrix} \mathbf{I} & 0 & 0 & 0 \\ \mathbf{M} & \mathbf{I} & 0 & 0 \\ \mathbf{M}^2 & \mathbf{M} & \mathbf{I} & 0 \\ \mathbf{M}^3 & \mathbf{M}^2 & \mathbf{M} & \mathbf{I} \end{pmatrix}$$

And using some notations:

- **②** So we are interested in approximating L^{-1} (that contains M^n).

Table of Contents

- Space vs. Randomness
- Motivation, Goals and Results
- On Raz and Reingold [RR99] PRG
 - Brief overview of [INW94]
 - [RR99] Assumptions, Doubts and Answers
 - Overview of [RR99]
- Error Reduction For WPRGs Against ROBPs [CDR+21]
 - Matrix Powering, PRGs and Laplacians inverses
 - Richardson Iterations
 - Error Reduction for PRGs
 - Subsequent work
- Future Directions

Richardson Iterations

Lemma (Precondition Richardson)

Let $L \in \mathbb{R}^{w \times w}$ invertible matrix. Let $\widetilde{L^{-1}}$ s.t.

$$\left\|\widetilde{\mathbf{L}^{-1}} - \mathbf{L}^{-1}\right\| \leq \boldsymbol{\varepsilon_0}.$$

Define
$$\mathbf{R}_k \stackrel{\text{def}}{=} \sum_{i=0}^k (\mathbf{I} - \widecheck{\mathbf{L}^{-1}} \cdot \mathbf{L})^i \cdot \widecheck{\mathbf{L}^{-1}}$$
. Then,

$$\left\|\mathbf{R}_k - \mathbf{L}^{-1}\right\| \leq \left\|\mathbf{L}^{-1}\right\| \cdot \left\|\mathbf{L}\right\|^{k+1} \cdot \boldsymbol{\varepsilon_0}^{k+1}.$$

Richardson Iterations

Lemma (Precondition Richardson)

Let $L \in \mathbb{R}^{w \times w}$ invertible matrix. Let $\widetilde{L^{-1}}$ s.t.

$$\left\|\widetilde{\mathbf{L}^{-1}} - \mathbf{L}^{-1}\right\| \leq \boldsymbol{\varepsilon_0}.$$

Define $\mathbf{R}_k \stackrel{\text{def}}{=} \sum_{i=0}^k (\mathbf{I} - \widecheck{\mathbf{L}}^{-1} \cdot \mathbf{L})^i \cdot \widecheck{\mathbf{L}}^{-1}$. Then,

$$\left\|\mathbf{R}_k - \mathbf{L}^{-1}\right\| \leq \left\|\mathbf{L}^{-1}\right\| \cdot \left\|\mathbf{L}\right\|^{k+1} \cdot \boldsymbol{\varepsilon_0}^{k+1}.$$

Reminder: Inverse of Laplacians

If I - A is invertible, then

$$(\mathbf{I} - \mathbf{A})^{-1} = \mathbf{I} + \mathbf{A} + \ldots + \mathbf{A}^n + \ldots$$

The intuition is pretty simple, as for $k = \infty$,

$$\mathbf{R}_{\infty} = \left(\sum_{i=0}^{\infty} (\mathbf{I} - \widetilde{\mathbf{L}^{-1}} \cdot \mathbf{L})^{i}\right) \cdot \widetilde{\mathbf{L}^{-1}} = \left(\mathbf{I} - \left(\mathbf{I} - \widetilde{\mathbf{L}^{-1}} \cdot \mathbf{L}\right)\right)^{-1} \cdot \widetilde{\mathbf{L}^{-1}} = \left(\widetilde{\mathbf{L}^{-1}} \cdot \mathbf{L}\right)^{-1} \cdot \widetilde{\mathbf{L}^{-1}} = \mathbf{L}^{-1}$$

Oren Renard Master's Thesis Presentation 42 / 56

Richardson Iterations

Lemma (Precondition Richardson)

Let $\mathbb{L} \in \mathbb{R}^{w \times w}$ invertible matrix. Let $\widetilde{\mathbf{L}}^{-1}$ s.t.

$$\left\|\widetilde{\mathbf{L}^{-1}} - \mathbf{L}^{-1}\right\| \leq \boldsymbol{\varepsilon_0}.$$

Define $\mathbf{R}_k \stackrel{\text{def}}{=} \sum_{i=0}^k (\mathbf{I} - \widecheck{\mathbf{L}^{-1}} \cdot \mathbf{L})^i \cdot \widecheck{\mathbf{L}^{-1}}$. Then,

$$\left\|\mathbf{R}_k - \mathbf{L}^{-1}\right\| \leq \left\|\mathbf{L}^{-1}\right\| \cdot \left\|\mathbf{L}\right\|^{k+1} \cdot \boldsymbol{\varepsilon_0}^{k+1}.$$

Reminder: Inverse of Laplacians

If I - A is invertible, then

$$(\mathbf{I} - \mathbf{A})^{-1} = \mathbf{I} + \mathbf{A} + \ldots + \mathbf{A}^n + \ldots$$

The intuition is pretty simple, as for $k = \infty$,

$$\mathbf{R}_{\infty} = \left(\sum_{i=0}^{\infty} (\mathbf{I} - \mathbf{L}^{-1} \cdot \mathbf{L})^{i}\right) \cdot \widetilde{\mathbf{L}^{-1}} = \left(\mathbf{I} - \left(\mathbf{I} - \widetilde{\mathbf{L}^{-1}} \cdot \mathbf{L}\right)\right)^{-1} \cdot \widetilde{\mathbf{L}^{-1}} = \left(\widetilde{\mathbf{L}^{-1}} \cdot \mathbf{L}\right)^{-1} \cdot \widetilde{\mathbf{L}^{-1}} = \mathbf{L}^{-1}$$

Oren Renard Master's Thesis Presentation 42 / 56

Richardson Iterations (cont.)

And for arbitrary k, use geometric sum:

$$\mathbf{R}_k = \sum_{i=0}^k (\mathbf{I} - \widetilde{\mathbf{L}^{-1}} \cdot \mathbf{L})^i \cdot \widetilde{\mathbf{L}^{-1}} = \frac{\mathbf{I} - (\mathbf{I} - \widetilde{\mathbf{L}^{-1}} \cdot \mathbf{L})^{k+1}}{\mathbf{I} - (\mathbf{I} - \widetilde{\mathbf{L}^{-1}} \cdot \mathbf{L})} \cdot \widetilde{\mathbf{L}^{-1}} = (\mathbf{I} - (\mathbf{I} - \widetilde{\mathbf{L}^{-1}} \cdot \mathbf{L})^{k+1}) \cdot \mathbf{L}^{-1}$$

Richardson Iterations (cont.)

And for arbitrary k, use geometric sum:

$$\mathbf{R}_k = \sum_{i=0}^k (\mathbf{I} - \widetilde{\mathbf{L}^{-1}} \cdot \mathbf{L})^i \cdot \widetilde{\mathbf{L}^{-1}} = \frac{\mathbf{I} - (\mathbf{I} - \widetilde{\mathbf{L}^{-1}} \cdot \mathbf{L})^{k+1}}{\mathbf{I} - (\mathbf{I} - \widetilde{\mathbf{L}^{-1}} \cdot \mathbf{L})} \cdot \widetilde{\mathbf{L}^{-1}} = (\mathbf{I} - (\mathbf{I} - \widetilde{\mathbf{L}^{-1}} \cdot \mathbf{L})^{k+1}) \cdot \mathbf{L}^{-1}$$

Thus,

$$\begin{split} \left\| \mathbf{R}_{k} - \mathbf{L}^{-1} \right\| &= \left\| (\mathbf{I} - (\mathbf{I} - \mathbf{L}^{-1} \cdot \mathbf{L})^{k+1}) \cdot \mathbf{L}^{-1} - \mathbf{L}^{-1} \right\| \\ &\leq \left\| (\mathbf{I} - \mathbf{L}^{-1} \cdot \mathbf{L})^{k+1} \right\| \cdot \left\| \mathbf{L}^{-1} \right\| \\ &\leq \left\| \mathbf{I} - \mathbf{L}^{-1} \cdot \mathbf{L} \right\|^{k+1} \cdot \left\| \mathbf{L}^{-1} \right\| \\ &\leq \left\| (\mathbf{L}^{-1} - \mathbf{L}^{-1}) \cdot \mathbf{L} \right\|^{k+1} \cdot \left\| \mathbf{L}^{-1} \right\| \\ &\leq (\boldsymbol{\epsilon}_{\mathbf{0}} \cdot \| \mathbf{L} \|)^{k+1} \cdot \left\| \mathbf{L}^{-1} \right\| \end{split}$$

Table of Contents

- Space vs. Randomness
- Motivation, Goals and Results
- 🗿 On Raz and Reingold [RR99] PRG
 - Brief overview of [INW94]
 - [RR99] Assumptions, Doubts and Answers
 - Overview of [RR99]
- Error Reduction For WPRGs Against ROBPs [CDR+21]
 - Matrix Powering, PRGs and Laplacians inverses
 - Richardson Iterations
 - Error Reduction for PRGs
 - Subsequent work
- Future Directions

Richardson in one line

$$\left\|\widetilde{\mathbf{L}^{-1}} - \mathbf{L}^{-1}\right\| \leq \boldsymbol{\varepsilon_0} \quad \Longrightarrow \quad \left\|\mathbf{R}_{k} - \mathbf{L}^{-1}\right\| \leq \left\|\mathbf{L}^{-1}\right\| \cdot \left\|\mathbf{L}\right\|^{k+1} \cdot \boldsymbol{\varepsilon_0}^{k+1} \stackrel{\mathsf{def}}{=} \boldsymbol{\varepsilon}$$

Richardson in one line

$$\left\|\widetilde{\mathbf{L}^{-1}} - \mathbf{L}^{-1}\right\| \leq \boldsymbol{\varepsilon_0} \quad \Longrightarrow \quad \left\|\mathbf{R}_{k} - \mathbf{L}^{-1}\right\| \leq \left\|\mathbf{L}^{-1}\right\| \cdot \left\|\mathbf{L}\right\|^{k+1} \cdot \boldsymbol{\varepsilon_0}^{k+1} \stackrel{\mathsf{def}}{=} \boldsymbol{\varepsilon}$$

Recall that given BP $\mathbf{M} \in \mathbb{R}^{w \times w}$, we wish to approximate \mathbf{M}^n . So...

Richardson in one line

$$\left\|\widetilde{\mathbf{L}^{-1}} - \mathbf{L}^{-1}\right\| \leq \boldsymbol{\varepsilon_0} \quad \Longrightarrow \quad \left\|\mathbf{R}_k - \mathbf{L}^{-1}\right\| \leq \left\|\mathbf{L}^{-1}\right\| \cdot \left\|\mathbf{L}\right\|^{k+1} \cdot \boldsymbol{\varepsilon_0}^{k+1} \stackrel{\mathsf{def}}{=} \boldsymbol{\varepsilon}$$

Recall that given BP $\mathbf{M} \in \mathbb{R}^{w \times w}$, we wish to approximate \mathbf{M}^n . So...

 $\qquad \textbf{Onstruct a modest approx.} \ \left\|\widetilde{\mathbf{M}^i} - \mathbf{M}^i \right\| \leq \pmb{\varepsilon_0}/n \ \text{for} \ i \in [n],$

Richardson in one line

$$\left\|\widetilde{\mathbf{L}^{-1}} - \mathbf{L}^{-1}\right\| \leq \boldsymbol{\varepsilon_0} \quad \Longrightarrow \quad \left\|\mathbf{R}_k - \mathbf{L}^{-1}\right\| \leq \left\|\mathbf{L}^{-1}\right\| \cdot \left\|\mathbf{L}\right\|^{k+1} \cdot \boldsymbol{\varepsilon_0}^{k+1} \stackrel{\mathsf{def}}{=} \boldsymbol{\varepsilon}$$

Recall that given BP $\mathbf{M} \in \mathbb{R}^{w \times w}$, we wish to approximate \mathbf{M}^n . So...

- $\qquad \textbf{Onstruct a modest approx.} \ \left\|\widetilde{\mathbf{M}^i} \mathbf{M}^i \right\| \leq \textcolor{red}{\varepsilon_0}/n \ \text{for} \ i \in [n],$
- ② Denote $\mathbf{L} = \mathbf{I} \mathbf{P}_{n+1} \otimes \mathbf{M}$, and encode

$$\widetilde{\mathbf{L}^{-1}} = \begin{pmatrix} \mathbf{I} & 0 & 0 & 0 & 0 \\ \widetilde{\mathbf{M}} & \mathbf{I} & 0 & 0 & 0 \\ \widetilde{\mathbf{M}^2} & \widetilde{\mathbf{M}} & \mathbf{I} & 0 & 0 \\ \vdots & \vdots & \widetilde{\mathbf{M}} & \mathbf{I} & 0 \\ \widetilde{\mathbf{M}^n} & \widetilde{\mathbf{M}^{n-1}} & \cdots & \mathbf{M} & \mathbf{I} \end{pmatrix}$$

Richardson in one line

$$\left\|\widetilde{\mathbf{L}^{-1}} - \mathbf{L}^{-1}\right\| \leq \boldsymbol{\varepsilon_0} \quad \Longrightarrow \quad \left\|\mathbf{R}_k - \mathbf{L}^{-1}\right\| \leq \left\|\mathbf{L}^{-1}\right\| \cdot \left\|\mathbf{L}\right\|^{k+1} \cdot \boldsymbol{\varepsilon_0}^{k+1} \stackrel{\mathsf{def}}{=} \boldsymbol{\varepsilon}$$

Recall that given BP $\mathbf{M} \in \mathbb{R}^{w \times w}$, we wish to approximate \mathbf{M}^n . So...

- $\qquad \textbf{Onstruct a modest approx.} \ \left\|\widetilde{\mathbf{M}^i} \mathbf{M}^i \right\| \leq \textcolor{red}{\varepsilon_0}/n \ \text{for} \ i \in [n],$
- ② Denote $\mathbf{L} = \mathbf{I} \mathbf{P}_{n+1} \otimes \mathbf{M}$, and encode

$$\widetilde{\mathbf{L}^{-1}} = \begin{pmatrix} \mathbf{I} & 0 & 0 & 0 & 0 \\ \widetilde{\mathbf{M}} & \mathbf{I} & 0 & 0 & 0 \\ \widetilde{\mathbf{M}^2} & \widetilde{\mathbf{M}} & \mathbf{I} & 0 & 0 \\ \vdots & \vdots & \widetilde{\mathbf{M}} & \mathbf{I} & 0 \\ \widetilde{\mathbf{M}^n} & \widetilde{\mathbf{M}^{n-1}} & \cdots & \mathbf{M} & \mathbf{I} \end{pmatrix}$$

 $\bullet \ \, \mathsf{Compute} \ \, \mathbf{R}_k = \textstyle \sum_{i=0}^k (\mathbf{I} - \widecheck{\mathbf{L}^{-1}} \cdot \mathbf{L})^i \cdot \widecheck{\mathbf{L}^{-1}} \ \, \mathsf{for} \ \, k = \frac{\log \mathfrak{e}^{-1}}{\log (n/\mathfrak{e}_{\mathbf{0}})}$

Richardson in one line

$$\left\|\widetilde{\mathbf{L}^{-1}} - \mathbf{L}^{-1}\right\| \leq \boldsymbol{\varepsilon_0} \quad \Longrightarrow \quad \left\|\mathbf{R}_k - \mathbf{L}^{-1}\right\| \leq \left\|\mathbf{L}^{-1}\right\| \cdot \left\|\mathbf{L}\right\|^{k+1} \cdot \boldsymbol{\varepsilon_0}^{k+1} \stackrel{\mathsf{def}}{=} \boldsymbol{\varepsilon}$$

Recall that given BP $\mathbf{M} \in \mathbb{R}^{w \times w}$, we wish to approximate \mathbf{M}^n . So...

- $\qquad \textbf{Onstruct a modest approx.} \ \left\|\widetilde{\mathbf{M}^i} \mathbf{M}^i \right\| \leq \textcolor{red}{\varepsilon_0}/n \ \text{for} \ i \in [n],$
- ② Denote $\mathbf{L} = \mathbf{I} \mathbf{P}_{n+1} \otimes \mathbf{M}$, and encode

$$\widetilde{\mathbf{L}^{-1}} = \begin{pmatrix} \mathbf{I} & 0 & 0 & 0 & 0 \\ \widetilde{\mathbf{M}} & \mathbf{I} & 0 & 0 & 0 \\ \widetilde{\mathbf{M}^2} & \widetilde{\mathbf{M}} & \mathbf{I} & 0 & 0 \\ \vdots & \vdots & \widetilde{\mathbf{M}} & \mathbf{I} & 0 \\ \widetilde{\mathbf{M}^n} & \widetilde{\mathbf{M}^{n-1}} & \cdots & \mathbf{M} & \mathbf{I} \end{pmatrix}$$

- **©** Compute $\mathbf{R}_k = \sum_{i=0}^k (\mathbf{I} \widetilde{\mathbf{L}^{-1}} \cdot \mathbf{L})^i \cdot \widetilde{\mathbf{L}^{-1}}$ for $k = \frac{\log \varepsilon^{-1}}{\log (n/\varepsilon_0)}$
- $\textbf{ 0} \text{ Output the bottom left block so } \|(\mathbf{R}_k)[n+1,1] \mathbf{M}^n\| \leq \pmb{\varepsilon}.$

Richardson in one line

$$\left\|\widetilde{\mathbf{L}^{-1}} - \mathbf{L}^{-1}\right\| \leq \boldsymbol{\varepsilon_0} \quad \Longrightarrow \quad \left\|\mathbf{R}_k - \mathbf{L}^{-1}\right\| \leq \left\|\mathbf{L}^{-1}\right\| \cdot \left\|\mathbf{L}\right\|^{k+1} \cdot \boldsymbol{\varepsilon_0}^{k+1} \stackrel{\mathsf{def}}{=} \boldsymbol{\varepsilon}$$

Recall that given BP $\mathbf{M} \in \mathbb{R}^{w \times w}$, we wish to approximate \mathbf{M}^n . So...

- ② Denote $\mathbf{L} = \mathbf{I} \mathbf{P}_{n+1} \otimes \mathbf{M}$, and encode

$$\widetilde{\mathbf{L}^{-1}} = \begin{pmatrix} \mathbf{I} & 0 & 0 & 0 & 0 \\ \widetilde{\mathbf{M}} & \mathbf{I} & 0 & 0 & 0 \\ \widetilde{\mathbf{M}^{2}} & \widetilde{\mathbf{M}} & \mathbf{I} & 0 & 0 \\ \vdots & \vdots & \widetilde{\mathbf{M}} & \mathbf{I} & 0 \\ \widetilde{\mathbf{M}^{n}} & \widetilde{\mathbf{M}^{n-1}} & \cdots & \mathbf{M} & \mathbf{I} \end{pmatrix}$$

- $\textbf{ Ompute } \mathbf{R}_k = \textstyle \sum_{i=0}^k (\mathbf{I} \widecheck{\mathbf{L}^{-1}} \cdot \mathbf{L})^i \cdot \widecheck{\mathbf{L}^{-1}} \text{ for } k = \frac{\log \varepsilon^{-1}}{\log (n/\varepsilon_0)}$
- **9** Output the bottom left block so $\|(\mathbf{R}_k)[n+1,1] \mathbf{M}^n\| \leq \varepsilon$.

Oren Renard

Examples

Consider k = 1 and n = 3. Then,

$$\mathbf{L} = \begin{pmatrix} \mathbf{I} & 0 & 0 & 0 \\ -\mathbf{M} & \mathbf{I} & 0 & 0 \\ 0 & -\mathbf{M} & \mathbf{I} & 0 \\ 0 & 0 & -\mathbf{M} & \mathbf{I} \end{pmatrix} , \ \widetilde{\mathbf{L}^{-1}} = \begin{pmatrix} \mathbf{I} & 0 & 0 & 0 \\ \widetilde{\mathbf{M}} & \mathbf{I} & 0 & 0 \\ \widetilde{\mathbf{M}^2} & \widetilde{\mathbf{M}} & \mathbf{I} & 0 \\ \widetilde{\mathbf{M}^3} & \widetilde{\mathbf{M}^2} & \widetilde{\mathbf{M}} & \mathbf{I} \end{pmatrix}$$

and

$$\mathbf{R}_{k=1} = \widetilde{\mathbf{L}^{-1}} + (\mathbf{I} - \widetilde{\mathbf{L}^{-1}} \cdot \mathbf{L})^1 \cdot \widetilde{\mathbf{L}^{-1}}.$$

Examples

Consider k = 1 and n = 3. Then,

$$L = \begin{pmatrix} \mathbf{I} & 0 & 0 & 0 \\ -\mathbf{M} & \mathbf{I} & 0 & 0 \\ 0 & -\mathbf{M} & \mathbf{I} & 0 \\ 0 & 0 & -\mathbf{M} & \mathbf{I} \end{pmatrix} \;,\; \widetilde{\underline{\mathbf{L}^{-1}}} = \begin{pmatrix} \mathbf{I} & 0 & 0 & 0 \\ \widetilde{\mathbf{M}} & \mathbf{I} & 0 & 0 \\ \widetilde{\mathbf{M}^2} & \widetilde{\mathbf{M}} & \mathbf{I} & 0 \\ \widetilde{\mathbf{M}^3} & \widetilde{\mathbf{M}^2} & \widetilde{\mathbf{M}} & \mathbf{I} \end{pmatrix}$$

and

$$\mathbf{R}_{k=1} = \widetilde{\mathbf{L}^{-1}} + (\mathbf{I} - \widetilde{\mathbf{L}^{-1}} \cdot \mathbf{L})^1 \cdot \widetilde{\mathbf{L}^{-1}}.$$

We examine $\mathbb{R}_{k=1}$:

$$(\mathbf{I} - \widetilde{\mathbf{L}^{-1}} \cdot \mathbf{L}) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ \mathbf{M} - \widetilde{\mathbf{M}} & 0 & 0 & 0 \\ \widetilde{\mathbf{M}} \mathbf{M} - \widetilde{\mathbf{M}^2} & \mathbf{M} - \widetilde{\mathbf{M}} & 0 & 0 \\ \widetilde{\mathbf{M}^2} \mathbf{M} - \widetilde{\mathbf{M}^3} & \widetilde{\mathbf{M}} \mathbf{M} - \widetilde{\mathbf{M}^2} & \mathbf{M} - \widetilde{\mathbf{M}} & 0 \end{pmatrix}$$

$$\mathbf{R}_{k=1} = \begin{pmatrix} \mathbf{I} & 0 & 0 & 0 \\ \mathbf{M} & \mathbf{I} & 0 & 0 \\ \widetilde{\mathbf{M}} \mathbf{M} + \mathbf{M} \widetilde{\mathbf{M}} - \widetilde{\mathbf{M}^2} & \mathbf{M} & \mathbf{I} & 0 \\ \widetilde{\mathbf{M}^2} \mathbf{M} - \widetilde{\mathbf{M}^2} \widetilde{\mathbf{M}} + \widetilde{\mathbf{M}} \mathbf{M} \widetilde{\mathbf{M}} - \widetilde{\mathbf{M}} \widetilde{\mathbf{M}^2} + \mathbf{M} \widetilde{\mathbf{M}^2} & \widetilde{\mathbf{M}} \mathbf{M} + \mathbf{M} \widetilde{\mathbf{M}} - \widetilde{\mathbf{M}^2} & \mathbf{M} & \mathbf{I} \end{pmatrix}$$

Examples (cont.)

Now take k = 2 and n = 3. Then,

$$L = \begin{pmatrix} \mathbf{I} & 0 & 0 & 0 \\ -\mathbf{M} & \mathbf{I} & 0 & 0 \\ 0 & -\mathbf{M} & \mathbf{I} & 0 \\ 0 & 0 & -\mathbf{M} & \mathbf{I} \end{pmatrix}, \ \widetilde{\mathbf{L}^{-1}} = \begin{pmatrix} \mathbf{I} & 0 & 0 & 0 \\ \widetilde{\mathbf{M}} & \mathbf{I} & 0 & 0 \\ \widetilde{\mathbf{M}^2} & \widetilde{\mathbf{M}} & \mathbf{I} & 0 \\ \widetilde{\mathbf{M}^3} & \widetilde{\mathbf{M}^2} & \widetilde{\mathbf{M}} & \mathbf{I} \end{pmatrix}$$

and

$$\mathbf{R}_{k=2} = \widetilde{\mathbf{L}^{-1}} + (\mathbf{I} - \widetilde{\mathbf{L}^{-1}} \cdot \mathbf{L})^1 \cdot \widetilde{\mathbf{L}^{-1}} + (\mathbf{I} - \widetilde{\mathbf{L}^{-1}} \cdot \mathbf{L})^2 \cdot \widetilde{\mathbf{L}^{-1}}$$

Examples (cont.)

Now take k = 2 and n = 3. Then,

$$L = \begin{pmatrix} \mathbf{I} & 0 & 0 & 0 \\ -\mathbf{M} & \mathbf{I} & 0 & 0 \\ 0 & -\mathbf{M} & \mathbf{I} & 0 \\ 0 & 0 & -\mathbf{M} & \mathbf{I} \end{pmatrix} \;,\; \widetilde{\underline{\mathbf{L}^{-1}}} = \begin{pmatrix} \mathbf{I} & 0 & 0 & 0 \\ \widetilde{\mathbf{M}} & \mathbf{I} & 0 & 0 \\ \widetilde{\mathbf{M}^2} & \widetilde{\mathbf{M}} & \mathbf{I} & 0 \\ \widetilde{\mathbf{M}^3} & \widetilde{\mathbf{M}^2} & \widetilde{\mathbf{M}} & \mathbf{I} \end{pmatrix}$$

and

$$\mathbf{R}_{k=2} = \widetilde{\mathbf{L}^{-1}} + (\mathbf{I} - \widetilde{\mathbf{L}^{-1}} \cdot \mathbf{L})^1 \cdot \widetilde{\mathbf{L}^{-1}} + (\mathbf{I} - \widetilde{\mathbf{L}^{-1}} \cdot \mathbf{L})^2 \cdot \widetilde{\mathbf{L}^{-1}}$$

So $\mathbb{R}_{k=2}$ looks like:

$$\begin{split} \mathbf{R}_{\pmb{k}=2} &= \begin{pmatrix} \mathbf{I} & 0 & 0 & 0 \\ \mathbf{M} & \nwarrow & 0 & 0 \\ \mathbf{M}^2 - \mathbf{M}\widetilde{\mathbf{M}} + \widetilde{\mathbf{M}}^2 + \widetilde{\mathbf{M}}\mathbf{M} - \widetilde{\mathbf{M}}^2 & \nwarrow & \nwarrow \\ \star & & \ddots & \nwarrow & \ddots & \nwarrow \end{pmatrix} \\ \star &= \widetilde{\mathbf{M}}\mathbf{M}^2 - 2\widetilde{\mathbf{M}}^2\mathbf{M} + 3\widetilde{\mathbf{M}}^3 + \mathbf{M}\widetilde{\mathbf{M}}\mathbf{M} - \mathbf{M}\widetilde{\mathbf{M}}^2 \\ &+ \mathbf{M}^2\widetilde{\mathbf{M}} + \widetilde{\mathbf{M}}^2\mathbf{M} - \widetilde{\mathbf{M}}^2\widetilde{\mathbf{M}} - \widetilde{\mathbf{M}}\widetilde{\mathbf{M}}^2 + \mathbf{M}\widetilde{\mathbf{M}}^2 \end{split}$$

Reminder

 ${f M}$ is some BP, ${f L}\stackrel{\mathsf{def}}{=} {f I} - {f P}_{n+1}\otimes {f M}$, and

$$\mathbf{L}^{-1} = \begin{pmatrix} \mathbf{M}^0 & 0 & 0 \\ \vdots & \ddots & 0 \\ \mathbf{M}^n & \cdots & \mathbf{M}^0 \end{pmatrix} , \ \widetilde{\mathbf{L}^{-1}} = \begin{pmatrix} \widetilde{\mathbf{M}^0} & 0 & 0 \\ \vdots & \ddots & 0 \\ \widetilde{\mathbf{M}^n} & \cdots & \widetilde{\mathbf{M}^0} \end{pmatrix}$$

where $\left\|\widetilde{\mathbf{M}^i} - \mathbf{M}^i \right\| \leq \boldsymbol{\varepsilon_0}/n$.

Richardson

$$\left\|\widetilde{\mathbf{L}^{-1}} - \mathbf{L}^{-1}\right\| \leq \boldsymbol{\varepsilon_0} \quad \Longrightarrow \quad \left\|\mathbf{R}_k - \mathbf{L}^{-1}\right\| \leq \left\|\mathbf{L}^{-1}\right\| \cdot \left\|\mathbf{L}\right\|^{k+1} \cdot \boldsymbol{\varepsilon_0}^{k+1} \stackrel{\mathsf{def}}{=} \boldsymbol{\varepsilon}.$$

Reminder

 ${f M}$ is some BP, ${f L}\stackrel{\mathsf{def}}{=} {f I} - {f P}_{n+1}\otimes {f M}$, and

$$\mathbf{L}^{-1} = \begin{pmatrix} \mathbf{M}^0 & 0 & 0 \\ \vdots & \ddots & 0 \\ \mathbf{M}^n & \cdots & \mathbf{M}^0 \end{pmatrix} , \ \widetilde{\mathbf{L}^{-1}} = \begin{pmatrix} \widetilde{\mathbf{M}^0} & 0 & 0 \\ \vdots & \ddots & 0 \\ \widetilde{\mathbf{M}^n} & \cdots & \widetilde{\mathbf{M}^0} \end{pmatrix}$$

where $\left\|\widetilde{\mathbf{M}^i} - \mathbf{M}^i \right\| \leq \boldsymbol{\varepsilon_0}/n$.

Richardson

$$\left\|\widetilde{\mathbf{L}^{-1}} - \mathbf{L}^{-1}\right\| \leq \boldsymbol{\varepsilon_0} \quad \Longrightarrow \quad \left\|\mathbf{R}_k - \mathbf{L}^{-1}\right\| \leq \left\|\mathbf{L}^{-1}\right\| \cdot \left\|\mathbf{L}\right\|^{k+1} \cdot \boldsymbol{\varepsilon_0}^{k+1} \stackrel{\mathsf{def}}{=} \boldsymbol{\varepsilon}.$$

It's not hard to convince that

$$\|\mathbf{L}\| \le 2 \quad , \quad \|\mathbf{L}^{-1}\| \le \frac{n}{n} + 1 \le \frac{2n}{n}$$

Oren Renard

Reminder

 ${f M}$ is some BP, ${f L}\stackrel{\mathsf{def}}{=} {f I} - {f P}_{n+1}\otimes {f M}$, and

$$\mathbf{L}^{-1} = \begin{pmatrix} \mathbf{M}^0 & 0 & 0 \\ \vdots & \ddots & 0 \\ \mathbf{M}^n & \cdots & \mathbf{M}^0 \end{pmatrix} , \ \widetilde{\mathbf{L}^{-1}} = \begin{pmatrix} \widetilde{\mathbf{M}^0} & 0 & 0 \\ \vdots & \ddots & 0 \\ \widetilde{\mathbf{M}^n} & \cdots & \widetilde{\mathbf{M}^0} \end{pmatrix}$$

where $\left\|\widetilde{\mathbf{M}^i} - \mathbf{M}^i \right\| \leq \boldsymbol{\varepsilon_0}/n$.

Richardson

$$\left\| \mathbf{L}^{-1} - \mathbf{L}^{-1} \right\| \leq \boldsymbol{\epsilon_0} \quad \Longrightarrow \quad \left\| \mathbf{R}_k - \mathbf{L}^{-1} \right\| \leq \left\| \mathbf{L}^{-1} \right\| \cdot \left\| \mathbf{L} \right\|^{k+1} \cdot \boldsymbol{\epsilon_0}^{k+1} \stackrel{\mathsf{def}}{=} \boldsymbol{\epsilon}.$$

It's not hard to convince that

$$\|\mathbf{L}\| \le 2$$
 , $\|\mathbf{L}^{-1}\| \le n + 1 \le 2n$

thus.

$$\|(\mathbf{R}_k - \mathbf{L}^{-1})_{n+1,1}\| \le \|\mathbf{R}_k - \mathbf{L}^{-1}\| \le \frac{2n}{2} \cdot (2 \cdot \boldsymbol{\varepsilon_0})^{k+1} \stackrel{\mathsf{def}}{=} \boldsymbol{\varepsilon},$$

so we need to take $k \stackrel{\text{def}}{=} \frac{\log \varepsilon^{-1}}{\log (4n^2/\varepsilon_0)}$.

Reminder

 ${f M}$ is some BP, ${f L}\stackrel{\mathsf{def}}{=} {f I} - {f P}_{n+1}\otimes {f M}$, and

$$\mathbf{L}^{-1} = \begin{pmatrix} \mathbf{M}^0 & 0 & 0 \\ \vdots & \ddots & 0 \\ \mathbf{M}^n & \cdots & \mathbf{M}^0 \end{pmatrix} , \ \widetilde{\mathbf{L}^{-1}} = \begin{pmatrix} \widetilde{\mathbf{M}^0} & 0 & 0 \\ \vdots & \ddots & 0 \\ \widetilde{\mathbf{M}^n} & \cdots & \widetilde{\mathbf{M}^0} \end{pmatrix}$$

where $\left\|\widetilde{\mathbf{M}^i} - \mathbf{M}^i \right\| \leq \boldsymbol{\varepsilon_0}/n$.

Richardson

$$\left\| \mathbf{L}^{-1} - \mathbf{L}^{-1} \right\| \le \boldsymbol{\varepsilon_0} \quad \Longrightarrow \quad \left\| \mathbf{R}_k - \mathbf{L}^{-1} \right\| \le \left\| \mathbf{L}^{-1} \right\| \cdot \left\| \mathbf{L} \right\|^{k+1} \cdot \boldsymbol{\varepsilon_0}^{k+1} \stackrel{\mathsf{def}}{=} \boldsymbol{\varepsilon}.$$

It's not hard to convince that

$$\|\mathbf{L}\| \le 2$$
 , $\|\mathbf{L}^{-1}\| \le \mathbf{n} + 1 \le 2\mathbf{n}$

thus,

$$\left\| (\mathbf{R}_k - \mathbf{L}^{-1})_{n+1,1} \right\| \leq \left\| \mathbf{R}_k - \mathbf{L}^{-1} \right\| \leq \frac{2n}{2n} \cdot (2 \cdot \boldsymbol{\varepsilon_0})^{k+1} \stackrel{\mathsf{def}}{=} \boldsymbol{\varepsilon},$$

so we need to take $k \stackrel{\text{def}}{=} \frac{\log \varepsilon^{-1}}{\log(4n^2/\varepsilon_0)}$.

Let $G:\{0,1\}^{s_0} \to \{0,1\}^n$ be some ${\color{red}\varepsilon_0}$ PRG, and denote $G_i(x) = G(x)_{0,...,i-1}.$

Let $G:\{0,1\}^{s_0}\to\{0,1\}^n$ be some $\pmb{\varepsilon_0}$ PRG, and denote $G_i(x)=G(x)_{0,...,i-1}.$ Recall,

$$\mathbf{R}_{k=1} = \begin{pmatrix} \mathbf{I} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{M} & \mathbf{I} & \mathbf{0} & \mathbf{0} \\ \widetilde{\mathbf{M}}\mathbf{M} + \mathbf{M}\widetilde{\mathbf{M}} - \widetilde{\mathbf{M}}^2 & \mathbf{M} & \mathbf{I} & \mathbf{0} \\ \widetilde{\mathbf{M}}^2\mathbf{M} - \widetilde{\mathbf{M}}^2\widetilde{\mathbf{M}} + \widetilde{\mathbf{M}}\mathbf{M}\widetilde{\mathbf{M}} - \widetilde{\mathbf{M}}\widetilde{\mathbf{M}}^2 + \mathbf{M}\widetilde{\mathbf{M}}^2 & \widetilde{\mathbf{M}}\mathbf{M} + \mathbf{M}\widetilde{\mathbf{M}} - \widetilde{\mathbf{M}}^2 & \mathbf{M} & \mathbf{I} \end{pmatrix}$$

Let $G:\{0,1\}^{s_0}\to\{0,1\}^n$ be some $\pmb{\varepsilon_0}$ PRG, and denote $G_i(x)=G(x)_{0,...,i-1}.$ Recall,

$$\mathbf{R}_{k=1} = \begin{pmatrix} \mathbf{I} & 0 & 0 & 0 \\ \mathbf{M} & \mathbf{I} & 0 & 0 \\ \widetilde{\mathbf{M}}\mathbf{M} + \mathbf{M}\widetilde{\mathbf{M}} - \widetilde{\mathbf{M}}^2 & \mathbf{M} & \mathbf{I} & 0 \\ \widetilde{\mathbf{M}}^2\mathbf{M} - \widetilde{\mathbf{M}}^2\widetilde{\mathbf{M}} + \widetilde{\mathbf{M}}\mathbf{M}\widetilde{\mathbf{M}} - \widetilde{\mathbf{M}}\widetilde{\mathbf{M}}^2 + \mathbf{M}\widetilde{\mathbf{M}}^2 & \widetilde{\mathbf{M}}\mathbf{M} + \mathbf{M}\widetilde{\mathbf{M}} - \widetilde{\mathbf{M}}^2 & \mathbf{M} & \mathbf{I} \end{pmatrix}$$

and for general k, it can be shown easily that

$$\mathbf{R}_{k}[n+1,1] = \sum_{r=1}^{n^{k}} \left(\pm \prod_{j_{r}=1}^{O(k)} \widetilde{\mathbf{M}^{i_{j_{r}}}} \right) = \sum_{r=1}^{n^{k}} \left(\pm \prod_{j_{r}=1}^{O(k)} \mathbb{E}_{j_{r}=1}^{\mathbb{E}_{x_{j_{r}} \in \{0,1\}^{s_{0}}}} [\mathbf{M}^{(G_{i_{j_{r}}}(x_{j_{r}}))}] \right)$$

Let $G:\{0,1\}^{s_0}\to\{0,1\}^n$ be some ϵ_0 PRG, and denote $G_i(x)=G(x)_{0,...,i-1}$. Recall,

$$\mathbf{R}_{k=1} = \begin{pmatrix} \mathbf{I} & 0 & 0 & 0 \\ \mathbf{M} & \mathbf{I} & 0 & 0 \\ \widetilde{\mathbf{M}}\mathbf{M} + \mathbf{M}\widetilde{\mathbf{M}} - \widetilde{\mathbf{M}}^2 & \mathbf{M} & \mathbf{I} & 0 \\ \widetilde{\mathbf{M}}^2\mathbf{M} - \widetilde{\mathbf{M}}^2\widetilde{\mathbf{M}} + \widetilde{\mathbf{M}}\mathbf{M}\widetilde{\mathbf{M}} - \widetilde{\mathbf{M}}\widetilde{\mathbf{M}}^2 + \mathbf{M}\widetilde{\mathbf{M}}^2 & \widetilde{\mathbf{M}}\mathbf{M} + \mathbf{M}\widetilde{\mathbf{M}} - \widetilde{\mathbf{M}}^2 & \mathbf{M} & \mathbf{I} \end{pmatrix}$$

and for general k, it can be shown easily that

$$\mathbf{R}_{k}[n+1,1] = \sum_{r=1}^{n^{k}} \left(\pm \prod_{j_{r}=1}^{O(k)} \widetilde{\mathbf{M}^{i_{j_{r}}}} \right) = \sum_{r=1}^{n^{k}} \left(\pm \prod_{j_{r}=1}^{O(k)} \mathbb{E}_{j_{r} \in \{0,1\}^{s_{0}}} [\mathbf{M}^{(G_{i_{j_{r}}}(x_{j_{r}}))}] \right)$$

So how much does it cost to sample k different seeds from G?

Oren Renard

Implied WPRG (cont.)

Let's say we take G as [Nis92] (actually, it's the best we can...),

Nisan [Nis92] PRG

For every $n, \mathbf{w}, \varepsilon$ there exists PRG against (n, \mathbf{w}) BP with seed

$$O(\log n \cdot (\log n + \log w + \log \varepsilon^{-1}))$$

Recall that we need $\epsilon_0 \stackrel{\text{def}}{=} 1/4n^2$, so

$$s_0 = O(\log n \cdot (\log n + \log w + \log \epsilon_0^{-1}))$$

= $O(\log n \cdot (\log n + \log w)).$

Implied WPRG (cont.)

Let's say we take G as [Nis92] (actually, it's the best we can...),

Nisan [Nis92] PRG

For every $n, \mathbf{w}, \varepsilon$ there exists PRG against (n, \mathbf{w}) BP with seed

$$O(\log n \cdot (\log n + \log w + \log \varepsilon^{-1}))$$

Recall that we need $\varepsilon_0 \stackrel{\text{def}}{=} 1/4n^2$, so

$$s_0 = O(\log n \cdot (\log n + \log w + \log \varepsilon_0^{-1}))$$

= $O(\log n \cdot (\log n + \log w)).$

Since we need O(k) different seeds, where

$$O(k) = O\left(\frac{\log \varepsilon^{-1}}{\log \varepsilon_0^{-1}}\right) = O\left(\frac{\log \varepsilon^{-1}}{\log n}\right)$$

the new seed length s_{new} is

$$\begin{aligned} \mathbf{s}_{\mathsf{new}} &= O(k \cdot s_0) \\ &= O\left(\frac{\log \varepsilon^{-1}}{\log n} \cdot \log n \cdot (\log n + \log w)\right) \\ &= \log \varepsilon^{-1} \cdot (\log n + \log w) \end{aligned}$$

and sadly, we've got longer seed $s_{\text{new}} \gg s_0$, as $\pmb{\varepsilon} \ll 1/n...$

Recall that

$$\mathbf{R}_{k}[n+1,1] = \sum_{r=1}^{n^{k}} \left(\pm \prod_{j_{r}=1}^{O(k)} \mathbb{E}_{j_{r} \in \{0,1\}^{s_{0}}} [\mathbf{M}^{(G_{i_{j_{r}}}(x_{j_{r}}))}] \right)$$

Recall that

$$\mathbf{R}_{\pmb{k}}[n+1,1] = \sum_{r=1}^{n^{\pmb{k}}} \left(\pm \prod_{j_r=1}^{O(\pmb{k})} \mathbb{E}_{x_{j_r} \in \{0,1\}^{\$_0}} [\mathbf{M}^{(G_{i_{j_r}}(x_{j_r}))}] \right)$$

By setting

$$\mathbf{N}^{(j_r)} \stackrel{\text{def}}{=} \underset{x_{j_r} \in \{0,1\}^{s_0}}{\mathbb{E}} [\mathbf{M}^{(G_{i_{j_r}}(x_{j_r}))}]$$

Recall that

$$\mathbf{R}_{k}[n+1,1] = \sum_{r=1}^{n^{k}} \left(\pm \prod_{j_{r}=1}^{O(k)} \mathbb{E}_{x_{j_{r}} \in \{0,1\}^{s_{0}}} [\mathbf{M}^{(G_{i_{j_{r}}}(x_{j_{r}}))}] \right)$$

By setting

$$\mathbf{N}^{(j_r)} \stackrel{\text{def}}{=} \underset{x_{j_r} \in \{0,1\}^{s_0}}{\mathbb{E}} [\mathbf{M}^{(G_{i_{j_r}}(x_{j_r}))}]$$

we observe that $\mathbf{R}_k[n+1,1]$ can bee seen as BP with alphabet $\Sigma=\{0,1\}^{s_0}$ (rather then $\{0,1\}$):

$$\mathbf{R}_{k}[n+1,1] = \sum_{r=1}^{n^{k}} \left(\pm \prod_{j=1}^{O(k)} \mathbf{N}^{(j_r)} \right)$$

Reminder

Let ${\bf M}$ be an $(n,w,\Sigma=\{0,1\})$ BP with all identical layers. Our goal is to approximate ${\bf M}^n$ where,

$$\mathbf{M}^n = \left(\frac{1}{2}\left(\mathbf{M}^{(0)} + \mathbf{M}^{(1)}\right)\right)^n = \prod_{i=1}^n \mathop{\mathbb{E}}_{i \in \{0,1\}} \mathbf{M}^{(i)}$$

Recall that

$$\mathbf{R}_{k}[n+1,1] = \sum_{r=1}^{n^{k}} \left(\pm \prod_{j_{r}=1}^{O(k)} \mathbb{E}_{x_{j_{r}} \in \{0,1\}^{s_{0}}} [\mathbf{M}^{(G_{i_{j_{r}}}(x_{j_{r}}))}] \right)$$

By setting

$$\mathbf{N}^{(j_r)} \stackrel{\mathsf{def}}{=} \underset{x_{j_r} \in \{0,1\}^{(i)}}{\mathbb{E}} [\mathbf{M}^{(G_{i_{j_r}}(x_{j_r}))}]$$

we observe that $\mathbf{R}_k[n+1,1]$ can bee seen as BP with alphabet $\Sigma=\{0,1\}^{s_0}$ (rather then $\{0,1\}$):

$$\mathbf{R}_{k}[n+1,1] = \sum_{r=1}^{n^{k}} \left(\pm \prod_{j=1}^{O(k)} \mathbf{N}^{(j_{r})} \right)$$

Reminder

Let ${\bf M}$ be an $(n,w,\Sigma=\{0,1\})$ BP with all identical layers. Our goal is to approximate ${\bf M}^n$ where.

$$\mathbf{M}^n = \left(\frac{1}{2}\left(\mathbf{M}^{(0)} + \mathbf{M}^{(1)}\right)\right)^n = \prod_{i=1}^n \mathbb{E}_{i \in \{0,1\}} \mathbf{M}^{(i)}$$

$$\mathbf{R}_k[n+1,1] = \sum_{r=1}^{n^k} \left(\pm \prod_{j=1}^{O(k)} \mathbf{N}^{(j_r)} \right) \quad , \quad \text{where } \mathbf{N}^{(j_r)} \text{ is an } (n',w',\Sigma=\{0,1\}^{s_0}) \text{ BP}$$

Impagliazzo, Nisan, and Wigderson [INW94] PRG

There exists $(n', w', \Sigma, \varepsilon_{\mathrm{INW}})$ PRG with seed length

$$\mathsf{s}_{\mathsf{INW}} = O(\log n' \cdot (\log n' + \log w' + \log \varepsilon_{\mathsf{INW}}^{-1})) + \log |\Sigma|$$

$$\mathbf{R}_k[n+1,1] = \sum_{r=1}^{n^k} \left(\pm \prod_{j=1}^{O(k)} \mathbf{N}^{(j_r)} \right) \quad , \quad \text{where } \mathbf{N}^{(j_r)} \text{ is an } (n',w',\Sigma = \{0,1\}^{s_0}) \text{ BP}$$

Impagliazzo, Nisan, and Wigderson [INW94] PRG

There exists $(n', w', \Sigma, \varepsilon_{\mathrm{INW}})$ PRG with seed length

$$\mathsf{s}_{\mathsf{INW}} = O(\log n' \cdot (\log n' + \log w' + \log \varepsilon_{\mathsf{INW}}^{-1})) + \log |\Sigma|$$

Our settings are:

$$\mathbf{R}_k[n+1,1] = \sum_{r=1}^{n^k} \left(\pm \prod_{j=1}^{O(k)} \mathbf{N}^{(j_r)} \right) \quad , \quad \text{where } \mathbf{N}^{(j_r)} \text{ is an } (n',w',\Sigma = \{0,1\}^{s_0}) \text{ BP}$$

Impagliazzo, Nisan, and Wigderson [INW94] PRG

There exists $(n', w', \Sigma, \varepsilon_{\text{INW}})$ PRG with seed length

$$\mathsf{s}_{\mathsf{INW}} = O(\frac{\log n'}{\cdot} \cdot (\log n' + \log w' + \log \varepsilon_{\mathsf{INW}}^{-1})) + \log |\Sigma|$$

Our settings are:

$$egin{align} n' = O(k) = O\left(rac{\log oldsymbol{arepsilon}^{-1}}{\log oldsymbol{arepsilon_0^{-1}}}
ight), & |\Sigma| = 2^{s_0} \ w' = w, & arepsilon_{\mathrm{INW}} = oldsymbol{arepsilon}/n^k = oldsymbol{arepsilon}^2 \end{aligned}$$

Oren Renard

$$\mathbf{R}_k[n+1,1] = \sum_{r=1}^{n^k} \left(\pm \prod_{j=1}^{O(k)} \mathbf{N}^{(j_r)} \right) \quad , \quad \text{where } \mathbf{N}^{(j_r)} \text{ is an } (n',w',\Sigma = \{0,1\}^{s_0}) \text{ BP}$$

Impagliazzo, Nisan, and Wigderson [INW94] PRG

There exists $(n', w', \Sigma, \varepsilon_{\text{INW}})$ PRG with seed length

$$\mathsf{s}_{\mathsf{INW}} = O(\log n' \cdot (\log n' + \log w' + \log \varepsilon_{\mathsf{INW}}^{-1})) + \log |\Sigma|$$

Our settings are:

$$\begin{split} & \boldsymbol{n}' = O(k) = O\left(\frac{\log \boldsymbol{\varepsilon}^{-1}}{\log \boldsymbol{\varepsilon_0}^{-1}}\right), & |\Sigma| = 2^{s_0} \\ & \boldsymbol{w}' = \boldsymbol{w}, & \varepsilon_{\mathrm{INW}} = \boldsymbol{\varepsilon}/\boldsymbol{n}^k = \boldsymbol{\varepsilon}^2 \end{split}$$

thus, the INW seed is:

$$\begin{aligned} \mathsf{s}_{\mathsf{INW}} &= O(\log k \cdot (\log k + \log w + \log \varepsilon_{\mathsf{INW}}^{-1})) + s_0 \\ &= s_0 + O((\log \varepsilon^{-1} + \log w) \cdot \log \log (1/\varepsilon)). \end{aligned}$$

Oren Renard Master's Thesis Presentation 5

$$\mathbf{R}_k[n+1,1] = \sum_{r=1}^{n^k} \left(\pm \prod_{j=1}^{O(k)} \mathbf{N}^{(j_r)} \right) \quad , \quad \text{where } \mathbf{N}^{(j_r)} \text{ is an } (n',w',\Sigma = \{0,1\}^{s_0}) \text{ BP}$$

Impagliazzo, Nisan, and Wigderson [INW94] PRG

There exists $(n', w', \Sigma, \varepsilon_{\text{INW}})$ PRG with seed length

$$\mathsf{s}_{\mathsf{INW}} = O(\log n' \cdot (\log n' + \log w' + \log \varepsilon_{\mathsf{INW}}^{-1})) + \log |\Sigma|$$

Our settings are:

thus, the INW seed is:

$$\begin{aligned} \mathsf{s}_{\mathsf{INW}} &= O(\log k \cdot (\log k + \log w + \log \varepsilon_{\mathsf{INW}}^{-1})) + s_0 \\ &= s_0 + O((\log \varepsilon^{-1} + \log w) \cdot \log \log(1/\varepsilon)). \end{aligned}$$

So we conclude an ε Weighted PRG against (n, w) with seed length

$$s_{\text{new}} = s_{\text{INW}} = s_0 + \widetilde{O}(\log \varepsilon^{-1} + \log w).$$
 ©

Oren Renard Master's Thesis Presentation 52 /

Table of Contents

- Space vs. Randomness
- Motivation, Goals and Results
- On Raz and Reingold [RR99] PRG
 - Brief overview of [INW94]
 - [RR99] Assumptions, Doubts and Answers
 - Overview of [RR99]
- Error Reduction For WPRGs Against ROBPs [CDR+21]
 - Matrix Powering, PRGs and Laplacians inverses
 - Richardson Iterations
 - Error Reduction for PRGs
 - Subsequent work
- Future Directions

Subsequent work

Further improvement. Hoza [Hoz21] showed how to combine an idea from Armoni [Arm98] to remove the $\log \log$ factors for PRGs with *inherent gap* between their seed length and space complexity.

Since Nisan's PRG indeed "blessed" with that gap, he concluded a WPRG with seed length

$$O(\log n \cdot (\log n + \log w) + \log \varepsilon^{-1})$$

Error reduction from $\varepsilon_0 \gg 1/n$. For the restricted class of *permutation* branching programs, Pyne and Vadhan [PV21] established the analysis under another norm $\|\cdot\|$, and so concluded error reduction when $\varepsilon_0 = 1/\log n$.

Table of Contents

- Space vs. Randomness
- Motivation, Goals and Results
- On Raz and Reingold [RR99] PRG
 - Brief overview of [INW94]
 - [RR99] Assumptions, Doubts and Answers
 - Overview of [RR99]
- 4 Error Reduction For WPRGs Against ROBPs [CDR+21]
 - Matrix Powering, PRGs and Laplacians inverses
 - Richardson Iterations
 - Error Reduction for PRGs
 - Subsequent work
- Future Directions

Future Directions

- Randomize [RR99] to get better space in price of seed
- ② Eliminate the restriction of the error reduction from $\epsilon_0 \approx 1/n$
- Ompositions of Weighted PRGs would yield immediate improvement of Nisan [Nis92] PRG

Future Directions

- Randomize [RR99] to get better space in price of seed
- ② Eliminate the restriction of the error reduction from $\epsilon_0 \approx 1/n$
- Compositions of Weighted PRGs would yield immediate improvement of Nisan [Nis92] PRG

Thanks!