Introduction to Algebraic-Geometric Codes

Spring 2019

Exercise 4

Publish Date: 11 April 19 Due Date: 02 May 19

Exercise 4.1. (a) Find a primitive element (a generator) in the separable extension $L = \mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$ over \mathbb{Q} .

- (b) Describe all the embeddings of L in $\overline{\mathbb{Q}}$ over \mathbb{Q} .
- (c) Let \mathbb{F} be a field and $\alpha \in \overline{\mathbb{F}}$ be a separable element. Show that the embeddings of $\mathbb{F}(\alpha)$ in $\overline{\mathbb{F}}$, $\Gamma_{\mathbb{F}(\alpha)/\mathbb{F}} = \{\sigma_1, \ldots, \sigma_n\}$, are linearly independent.

Exercise 4.2. Let \mathbb{F} be a field, show that the extension $\overline{\mathbb{F}}[x_1,\ldots,x_n]$ over $\mathbb{F}[x_1,\ldots,x_n]$ is integral.

Exercise 4.3. Let A be a domain, and let B be an integral extension of A. Prove that B is a field if and only if A is a field.

Exercise 4.4. Let K be a field and let $f(x,y) = y^2 - x^3(1-x)$, g(x,y) = x+y+1, $h(x,y) = y^3 - x \in \overline{K}[x,y]$. Prove or disprove:

- 1. C_g is integrally closed in $\overline{K}(Z_g)$.
- 2. C_f is integrally closed in $\overline{K}(Z_f)$.
- 3. C_h is integrally closed in $\overline{K}(Z_h)$.