Pseudorandomness

Fall 2023/4

Problem Set 3

Publish Date: March 10, 2024

Due Date: March 31, 2024 (all day long)

Note. Submissions must be made in pairs. Please type your solutions and submit them as a PDF file through Moodle. If you have any questions, feel free to send an email to Itay or to Gil.

Question 1. Consider a generalized type of decision trees. In this variation, instead of labeling each node with a single variable, we label it with a subset of variables. The tree then branches left or right based on the parity of the values in this subset. Your task is to give an explicit construction a PRG for this model. Aim for the construction to be as efficient as possible in terms of seed length, considering the tree's size, denoted by m, the error ε , and the total number of variables, n.

Question 2. Let G = (V, E) be a *d*-regular graph with rotation map $\pi_G : V \times [d] \to V \times [d]$. Assume that π_G satisfies the following property: For every $v \in V$ and $i \in [d]$, it holds that $\pi_G(v, i) = (u, i)$ for some $u \in V$ (informally, if v consider u as its *i*-th neighbor than so does u consider v as its *i*-th neighbor). Prove that in such case, for every graph H on d vertices, the spectrum of $G \boxtimes H$ contains that of H^2 .

Question 3. Generalize the merger construction we saw in class to the case of $t \ge 2$ random variables. More precisely, given $\alpha, \varepsilon \in (0, 1)$, devise an efficient algorithm

Merg :
$$(\{0,1\}^n)^t \times \{0,1\}^d \to \{0,1\}^n$$

with the following property: For every sequence of random variables X_1, \ldots, X_t , supported on $\{0, 1\}^n$, if one of the X_i -s is uniform then

$$\mathsf{Merg}(X_1,\ldots,X_t,S) \approx_{\varepsilon} G,$$

where S is uniform over $\{0,1\}^d$ and independent of the joint distribution of the X_j -s, and G has min-entropy $(1-\alpha)n$. Your seed length should be $d = O\left(\frac{1}{\alpha}\log\frac{nt}{\varepsilon}\right)$. *Hint:* Instead of passing a line through points corresponding to X_1, \ldots, X_t , consider a higher degree curve.