Introduction to Algebraic-Geometric Codes

Spring 2019

Exercise 3

Publish Date: 20 March 19 Due Date: 11 April 19

Exercise 3.1. Let R be a UFD, and K be its fraction field. Let $\alpha \in K$ and $f \in K[x]$, prove that:

- (a) $\alpha \in R^* \iff ord_p(\alpha) = 0$ for all prime elements $p \in R$.
- (b) $cont(f) \in R \iff f \in R[x].$
- (c) If $c_1f_1 = c_2f_2$ and $cont(f_1) = cont(f_2) = 1$ then f_1, f_2 are associates in R[x].

Exercise 3.2. Let $V = \mathbb{C}^2$, and consider V as a $\mathbb{C}[x]$ module where the multiplication by x is defined to be multiplication by $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$. Let $W = \mathbb{C}^2$, and consider W as a $\mathbb{C}[x]$ module where the multiplication by x is defined to be multiplication by $\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$.

- (a) Prove that W, V are $\mathbb{C}[x]$ modules.
- (b) Prove that $W \not\simeq V$ as $\mathbb{C}[x]$ modules.

Exercise 3.3. Consider the following exact sequence.

$$0 \longrightarrow M' \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} M'' \longrightarrow 0$$

- (a) Prove that if M', M" are finitely generated then M is finitely generated.
- (b) Does the other direction holds? Prove or give a counter example.
- (c) Prove that if M is finitely generated then M'' is finitely generated.

Exercise 3.4. Let $d \in \mathbb{Z}$ be square free. Show that the integral closure of \mathbb{Z} in $\mathbb{Q}[\sqrt{d}]$ is

$$\begin{cases} \mathbb{Z}[\frac{\sqrt{d}+1}{2}] & d \equiv 1 \mod 4 \\ \mathbb{Z}[\sqrt{d}] & otherwise \end{cases}$$

Exercise 3.5. Let F be a field. A linear subspace C of F^n is said to be cyclic if whenever $(c_0, c_1, \ldots, c_{n-1}) \in C$ it follows that $(c_{n-1}, c_0, \ldots, c_{n-2}) \in C$.

- (a) Prove that there is a bijection between the monic divisors of x^n-1 in F[x] and the ideals of $F[x]/\langle x^n-1\rangle$.
- (b) Prove that there is a bijection between the ideals of $F[x]/\langle x^n-1\rangle$ and the cyclic subspaces of F^n .
- (c) Find all cyclic subspaces of \mathbb{F}_2^7 with dimension 4. Hint: $(x+1)(x^3+x+1)(x^3+x^2+1)$ is the factorization of x^7-1 to irreducible factors over \mathbb{F}_2 .