Introduction to Algebraic-Geometric Codes

Spring 2019

Exercise 2

Publish Date: 06 March 19

Due Date: 20 March 19

Exercise 2.1. Let R be a UFD, prove that every irreducible element in R is prime.

Exercise 2.2. Let R be a ring. Show that the following two conditions are equivalent:

- (i) Every ideal in R can be generated by finitely many elements.
- (ii) R satisfies the ascending chain condition: every (infinite) ascending chain of ideals $I_1 \subset I_2 \subset I_3 \subset \ldots$ is stationary, i. e. we must have $I_m = I_{m+1} = I_{m+2} = \ldots$ for some m.

If R satisfies these conditions, it is called Noetherian

Definition. Let R be an integral domain. A Euclidean norm in R is a map $N : R \setminus 0 \to \mathbb{N}$ satisfying the following.

For every $a, b \in R$ with $b \neq 0$, there exist $q, r \in R$ such that:

- a = qb + r
- N(r) < N(b) or r = 0

A Euclidean domain is an integral domain with a Euclidean norm.

Exercise 2.3. Prove that every Euclidean domain is a PID.

Exercise 2.4. Let F be a field, prove that F[x] is a Euclidean domain.

Exercise 2.5. Let $p \in \mathbb{Z}$ be a prime number, and let $\overline{g}(x) \in (\mathbb{Z}/p\mathbb{Z})[x]$ be any irreducible polynomial. Let $g(x) \in \mathbb{Z}[x]$ be such that it image under the natural reduction $(\mathbb{Z}/p\mathbb{Z})[x]$ is $\overline{g}(x)$. Show that the ideal $\langle p, g(x) \rangle$ is maximal in $\mathbb{Z}[x]$